Copyright
©The Author(s) 2025.
World J Gastrointest Oncol. Apr 15, 2025; 17(4): 100089
Published online Apr 15, 2025. doi: 10.4251/wjgo.v17.i4.100089
Published online Apr 15, 2025. doi: 10.4251/wjgo.v17.i4.100089
Table 4 Quality of three-dimensional models, mean ± SD
Algorithm model | Logistic regression | Random forest | CatBoost |
5-fold cross validation ROC AUC1 | |||
Pre- and intraoperative data model | 0.71 ± 0.088 | 0.67 ± 0.09 | 0.68 ± 0.07 |
3-5 days after surgery | 0.77 ± 0.145 | 0.726 ± 0.145 | 0.74 ± 0.16 |
5-fold cross validation ROC AUC2 | |||
Pre- and intraoperative data model: Fistula B/C vs other classes | 0.77 | 0.73 | 0.85 |
3-5 days after surgery: Fistula B/C vs other classes | 0.76 | 0.77 | 0.86 |
Pre- and intraoperative data model: Fistula B/C vs biochemical leak | 0.73 | 0.45 | 0.74 |
3-5 days after surgery: Fistula B/C vs biochemical leak | 0.39 | 0.44 | 0.47 |
- Citation: Potievskiy MB, Petrov LO, Ivanov SA, Sokolov PV, Trifanov VS, Grishin NA, Moshurov RI, Shegai PV, Kaprin AD. Machine learning for modeling and identifying risk factors of pancreatic fistula. World J Gastrointest Oncol 2025; 17(4): 100089
- URL: https://www.wjgnet.com/1948-5204/full/v17/i4/100089.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v17.i4.100089