Copyright
©The Author(s) 2024.
World J Gastrointest Oncol. Sep 15, 2024; 16(9): 3839-3850
Published online Sep 15, 2024. doi: 10.4251/wjgo.v16.i9.3839
Published online Sep 15, 2024. doi: 10.4251/wjgo.v16.i9.3839
Figure 2 Revising modeling parameters in the training set.
A: Ten-fold cross-validation for tuning parameter selection in the least absolute shrinkage and selection operator (LASSO) model; B: LASSO coefficient curve of 9 variables; C: The relationship between the quantity of decision trees and the average out-of-bag evaluation; D: The ranking of variable importance based on differences in univariate analysis. WBC: White blood cell; RBC: Red blood cell; PLT: Platelet; AFP: Alpha-fetoprotein; PIVKA: Protein induced by vitamin K absence or antagonist; CA: Carbohydrate antigen; CEA: Carcinoembryonic antigen; HB: Hemoglobin level.
- Citation: Wang YY, Yang WX, Du QJ, Liu ZH, Lu MH, You CG. Construction and evaluation of a liver cancer risk prediction model based on machine learning. World J Gastrointest Oncol 2024; 16(9): 3839-3850
- URL: https://www.wjgnet.com/1948-5204/full/v16/i9/3839.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v16.i9.3839