Copyright
©The Author(s) 2024.
World J Gastrointest Oncol. Mar 15, 2024; 16(3): 857-874
Published online Mar 15, 2024. doi: 10.4251/wjgo.v16.i3.857
Published online Mar 15, 2024. doi: 10.4251/wjgo.v16.i3.857
Table 6 Diagnostic performance of the clinical-radiological feature, combined radiomics, and radiomics nomogram models
Set | Model | AUC (95%CI) | Accuracy | Sensitivity | Specificity | PPV | NPV |
Training | |||||||
Clinical-radiological feature | 0.833 (0.753-0.913) | 0.792 | 0.830 | 0.754 | 0.737 | 0.776 | |
Combined radiomics | 0.825 (0.747-0.903) | 0.726 | 0.736 | 0.717 | 0.722 | 0.731 | |
Radiomics nomogram | 0.859 (0.787-0.931) | 0.792 | 0.830 | 0.754 | 0.772 | 0.816 | |
Internal test | |||||||
Clinical-radiological feature | 0.781 (0.644-0.918) | 0.744 | 0.782 | 0.708 | 0.720 | 0.773 | |
Combined radiomics | 0.788 (0.649-0.927) | 0.745 | 0.783 | 0.709 | 0.720 | 0.773 | |
Radiomics nomogram | 0.848 (0.726-0.970) | 0.787 | 0.826 | 0.750 | 0.760 | 0.818 | |
External test | |||||||
Clinical-radiological feature | 0.684 (0.498-0.862) | 0.676 | 0.500 | 0.842 | 0.750 | 0.64 | |
Combined radiomics | 0.680 (0.502-0.866) | 0.676 | 0.500 | 0.842 | 0.750 | 0.640 | |
Radiomics nomogram | 0.757 (0.592-0.922) | 0.729 | 0.611 | 0.842 | 0.750 | 0.783 |
- Citation: Zhang C, Zhong H, Zhao F, Ma ZY, Dai ZJ, Pang GD. Preoperatively predicting vessels encapsulating tumor clusters in hepatocellular carcinoma: Machine learning model based on contrast-enhanced computed tomography. World J Gastrointest Oncol 2024; 16(3): 857-874
- URL: https://www.wjgnet.com/1948-5204/full/v16/i3/857.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v16.i3.857