Retrospective Study
Copyright ©The Author(s) 2024.
World J Gastrointest Oncol. Mar 15, 2024; 16(3): 857-874
Published online Mar 15, 2024. doi: 10.4251/wjgo.v16.i3.857
Table 4 Performance of logistic regression, support vector machine, decision tree, and random forest in the combined radiomics for predicting vessels encapsulating tumor clusters
Set
ML model
AUC (95%CI)
Accuracy
Sensitivity
Specificity
PPV
NPV
Training
LR0.825 (0.747-0.903)0.7260.7360.7170.7220.731
SVM0.874 (0.805-0.943)0.7640.7920.7360.7450.765
DT0.862 (0.794-0.930)0.8200.8110.8300.8270.815
RF1 (1.000-1.000)11111
Internal test
LR0.788 (0.649-0.927)0.7450.7830.7080.7200.773
SVM0.766 (0.629-0.903)0.6810.7390.6250.6540.714
DT0.698 (0.556-0.840)0.6590.6960.6250.6400.682
RF0.723 (0.577-0.869)0.7020.7390.6670.6670.696
External test
LR0.680 (0.498-0.862)0.6760.5000.8420.7500.640
SVM0.632 (0.438-0.826)0.6760.5000.8420.750.640
DT0.667 (0.482-0.852)0.6760.5000.8420.7500.640
RF0.614 (0.428-0.800)0.5680.4440.6840.5710.565