Copyright
©The Author(s) 2024.
World J Gastrointest Oncol. Mar 15, 2024; 16(3): 819-832
Published online Mar 15, 2024. doi: 10.4251/wjgo.v16.i3.819
Published online Mar 15, 2024. doi: 10.4251/wjgo.v16.i3.819
Model | Training cohort | Validation cohort | ||||||
AUC | 95%CI | Sensitivity | Specificity | AUC | 95%CI | Sensitivity | Specificity | |
clinical | 0.751 | 0.661-0.842 | 0.660 | 0.719 | 0.676 | 0.525-0.827 | 0.731 | 0.647 |
Radiomics | 0.796 | 0.723-0.869 | 0.660 | 0.812 | 0.735 | 0.604-0.866 | 0.641 | 0.824 |
Radiomics-clinical model | 0.862 | 0.796-0.927 | 0.777 | 0.812 | 0.761 | 0.635-0.887 | 0.705 | 0.765 |
- Citation: Zheng HD, Huang QY, Huang QM, Ke XT, Ye K, Lin S, Xu JH. T2-weighted imaging-based radiomic-clinical machine learning model for predicting the differentiation of colorectal adenocarcinoma. World J Gastrointest Oncol 2024; 16(3): 819-832
- URL: https://www.wjgnet.com/1948-5204/full/v16/i3/819.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v16.i3.819