Retrospective Study
Copyright ©The Author(s) 2024.
World J Gastrointest Oncol. Mar 15, 2024; 16(3): 819-832
Published online Mar 15, 2024. doi: 10.4251/wjgo.v16.i3.819
Table 2 Comparative analysis of machine learning modeling of radiomics

AUC
95%CI
Sensitivity
Specificity
Accuracy
PPV
PPV
Training cohort
    LR0.7370.656-0.8180.5270.8750.5770.9610.239
    SVM0.9860.973-0.9990.9471.0000.9551.0000.762
    KNN0.8800.835-0.9240.6491.0000.7001.0000.327
    RF1.0000.999-1.0000.9891.0000.9911.0000.941
    ET1.0001.000-1.0001.0001.0001.0001.0001.000
    XGBoost1.0001.000-1.0001.0001.0001.0001.0001.000
    LightGBM0.9720.953-0.9920.9100.9690.9180.9940.646
    MLP0.7960.723-0.8690.6600.8120.6820.9540.289
Validation cohort
    LR0.7280.586-0.8700.6920.7650.5770.9310.351
    SVM0.6840.527-0.8410.7560.5880.9550.8940.345
    KNN0.6290.485-0.7720.6281.0000.7000.8750.256
    RF0.5970.442-0.7520.8720.4170.9910.8500.333
    ET0.6200.497-0.7430.4231.0001.0000.9430.250
    XGBoost0.5940.430-0.7580.8080.4711.0000.8750.348
    LightGBM0.6010.464-0.7390.3720.8820.9180.9350.234
    MLP0.7350.604-0.8660.6410.8240.6820.9430.333