Copyright
©The Author(s) 2024.
World J Gastrointest Oncol. Dec 15, 2024; 16(12): 4663-4674
Published online Dec 15, 2024. doi: 10.4251/wjgo.v16.i12.4663
Published online Dec 15, 2024. doi: 10.4251/wjgo.v16.i12.4663
P value | 95%CI | ||
Lower bound | Upper bound | ||
Size | 0.000 | -0.763 | -0.473 |
Range of tumor enhancement during the arterial phase | 0.131 | -0.035 | 0.005 |
Range of tumor enhancement during the venous phase | 0.220 | -0.007 | 0.032 |
Range of tumor enhancement during the delay phase | 0.858 | -0.021 | 0.017 |
Morphology | 0.602 | -0.387 | 0.608 |
Location | 0.074 | -0.063 | 1.386 |
Ulceration | 0.004 | -1.622 | -0.300 |
Enlarged feeding vessels | 0.000 | -2.134 | -1.094 |
Growth pattern | 0.224 | -0.833 | 0.328 |
Contrast enhancement during the venous phase | 0.428 | -2.266 | 1.384 |
Necrosis | 0.236 | -0.195 | 0,793 |
Lymph nodes | 0.890 | -1.934 | 1.678 |
- Citation: Li Y, Liu YB, Li XB, Cui XN, Meng DH, Yuan CC, Ye ZX. Deep learning model combined with computed tomography features to preoperatively predicting the risk stratification of gastrointestinal stromal tumors. World J Gastrointest Oncol 2024; 16(12): 4663-4674
- URL: https://www.wjgnet.com/1948-5204/full/v16/i12/4663.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v16.i12.4663