Copyright
©The Author(s) 2024.
World J Gastrointest Oncol. Dec 15, 2024; 16(12): 4597-4613
Published online Dec 15, 2024. doi: 10.4251/wjgo.v16.i12.4597
Published online Dec 15, 2024. doi: 10.4251/wjgo.v16.i12.4597
Regression methods | MSEs | |||
OS | DFS | RFS | DMFS | |
Subset regression method | 0.3451435 | 0.2798500 | 0.2982825 | 0.2473204 |
Ridge regression method | 0.3446552 | 0.2851649 | 0.3134211 | 0.2618467 |
LASSO regression method | 0.3539798 | 0.2841859 | 0.3051014 | 0.2600286 |
LASSO cross-validation method | 0.3594004 | 0.3240556 | 0.3087686 | 0.2833409 |
- Citation: Ji XL, Xu S, Li XY, Xu JH, Han RS, Guo YJ, Duan LP, Tian ZB. Prognostic prediction models for postoperative patients with stage I to III colorectal cancer based on machine learning. World J Gastrointest Oncol 2024; 16(12): 4597-4613
- URL: https://www.wjgnet.com/1948-5204/full/v16/i12/4597.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v16.i12.4597