Copyright
©The Author(s) 2024.
World J Gastrointest Oncol. Dec 15, 2024; 16(12): 4548-4552
Published online Dec 15, 2024. doi: 10.4251/wjgo.v16.i12.4548
Published online Dec 15, 2024. doi: 10.4251/wjgo.v16.i12.4548
Model | Cohort | C-index | AUC | ||
1-year | 3-year | 5-year | |||
CoxPH | Training | 0.834 (0.789-0.879) | 0.848 (0.763-0.930) | 0.881 (0.831-0.932) | 0.875 (0.822-0.927) |
Internal | 0.871 (0.802-0.940) | 0.843 (0.717-0.969) | 0.948 (0.892-1.000) | 0.990 (0.969-1.000) | |
External | 0.744 (0.665-0.822) | 0.786 (0.622-0.889) | 0.834 (0.735-0.934) | 0.810 (0.688-0.931) | |
RSF | Training | 0.940 (0.924-0.956) | 0.962 (0.938-0.989) | 0.979 (0.963-0.995) | 0.971 (0.951-0.992) |
Internal | 0.870 (0.818-0.921) | 0.867 (0.761-0.973) | 0.955 (0.899-1.000) | 0.986 (0.960-1.000) | |
External | 0.769 (0.691-0.846) | 0.803 (0.608-0.891) | 0.895 (0.814-0.976) | 0.869 (0.769-0.970) |
- Citation: Wang HN, An JH, Zong L. Estimating prognosis of gastric neuroendocrine neoplasms using machine learning: A step towards precision medicine. World J Gastrointest Oncol 2024; 16(12): 4548-4552
- URL: https://www.wjgnet.com/1948-5204/full/v16/i12/4548.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v16.i12.4548