Copyright
©The Author(s) 2023.
World J Gastrointest Oncol. Nov 15, 2023; 15(11): 1998-2016
Published online Nov 15, 2023. doi: 10.4251/wjgo.v15.i11.1998
Published online Nov 15, 2023. doi: 10.4251/wjgo.v15.i11.1998
Table 5 Characteristics of the studies about diagnosis of invasion depth of esophageal cancers
Ref. | Format | Scale | Continent | Depth | Architecture of CNN | Image type | Histological type | Real-time | External validation | Quality | Endoscopist control | Patients training set | Images training set | Patients test set | Images test set | TP | FP | FN | TN |
Horie et al[29], 2019 | Retrospective | Unicenter | Asia | T1a, T1b vs T2-4 | SSD | WLI/NBI | ESCC/EAC | Yes | No | High | No | 384 | 8428 | NM | 168 | 142 | 2 | 1 | 23 |
Nakagawa et al[31], 2019 | Retrospective | Unicenter | Asia | pEP-SM1, pEP-MM | SSD | WLI/NBI/BLI | ESCC | No | No | High | 16 | 804 | 14338 | 155 | 914 | 714 | 24 | 60 | 132 |
Tokai et al[57], 2020 | Retrospective | Unicenter | Asia | pEP-SM1 | SSD | NBI/WLI | ESCC | No | No | High | 13 | NM | 10179 | NM | 279 | 159 | 24 | 30 | 66 |
- Citation: Zhang JQ, Mi JJ, Wang R. Application of convolutional neural network-based endoscopic imaging in esophageal cancer or high-grade dysplasia: A systematic review and meta-analysis. World J Gastrointest Oncol 2023; 15(11): 1998-2016
- URL: https://www.wjgnet.com/1948-5204/full/v15/i11/1998.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v15.i11.1998