Copyright
©The Author(s) 2022.
World J Gastrointest Oncol. Apr 15, 2022; 14(4): 765-793
Published online Apr 15, 2022. doi: 10.4251/wjgo.v14.i4.765
Published online Apr 15, 2022. doi: 10.4251/wjgo.v14.i4.765
Table 3 Artificial intelligence application in hepatocellular carcinoma treatment
First author | Parameters employed | AI classifier | Sizes of the training/validation sets | Outcomes | Performance | Ref. | |
1 | Tsilimigras DI | Laboratory results, clinicopathological parameters, tumor characteristics | CART | 976 | Determining factors of prognostic weight preoperatively within the BCLC staging system | - | [99] |
2 | Liu F | Contrast-enhanced US radiomics, laboratory tests, and clinicopathological parameters | CNN | 293/126 patients | 2-yr progression-free survival of patients following RFA or surgical resection | 0.754-0.7841,2, 0.726-0.7411,3 | [100] |
3 | Choi GH | Demographics, laboratory results, tumor characteristics, clinicopathological parameters | RF | 813/208 patients | Treatment recommendation. Survival prediction | 76.6-88.43,4, 53.0-82.33,5, 69.3-95.83,6. 0.676-0.9591,3 | [101] |
4 | Chen M | Hematoxylin and eosin-stained WSI | CNN | 377 (training:validation = 3:1)/ 677 patients | Mutation prediction | 89.6-94.03,4, 0.720-0.8051,7 | [75] |
5 | Liao H | Hematoxylin and eosin-stained WSI | CNN | 309/653/787 | Mutation prediction | 0.519-0.9031,3, 0.605-0.7971,7 | [103] |
6 | Gu J | Multiphasic CT scans | CNN | 14 patients | Mutation prediction | 67.7-77.33,4 | [104] |
7 | Chen G | Laboratory results | LIME | 1007/10857 patients | MVI | 0.9181,2, 0.8321,3, 0.9051,7 | [105] |
8 | Zhang Y | MRI scans | CNN | 158/79 patients | MVI | 0.811,2, 692,5, 792,6, 0.721,3, 553,5, 813,6 | [106] |
9 | Wang G | DWI | CNN | 60/402 HCCs | MVI | 66.81-77.502,3,4, 68.65-79.691,2,3, 56.56-76.472,3,5, 64.35-79.132,3,6 | [107] |
10 | Liu QP | CT radiomics | RF, SVM | 494 patients | MVI | 0.841,2, 0.791,3 | [108] |
11 | Jiang YQ | CT radiomics, clinical/laboratory parameters | Gradient boosting, CNN | 405 patients [220 MVI (+)/185 MVI (-)] | MVI | Gradient boosting: 0.900-0.9521,2, 0.873-0.8871,3. CNN: 80.2- | [109] |
12 | Cucchetti A | Laboratory results, clinicopathological parameters, radiological data, histological data | ANN | 175/753 | MVI. Histopathological grade | 0.921,2, 91.03,4. 0.941,2, 93.33,4 | [110] |
13 | Mai RY | Laboratory results, clinicopathological parameters, liver volumetry | ANN | 265/88 patients | Posthemihepatectomy liver failure | 0.8801,2, 0.8761,3 | [111] |
14 | Shi HY | Laboratory results, clinicopathological parameters, surgery parameters | ANN | 22926 hepatectomies | In-hospital mortality following surgical resection | 97.283,4, 0.841,3, 95.934,7, 0.821,7, 78.405,7, 94.576,7 | [112] |
15 | Liu D | US radiomics | CNN | 89/41 patients | Classify full/partial response from stable disease/ progression in patients treated with TACE | 78-982,4, 0.82-0.981,2, 78.6-98.22,5, 74.2-96.72,6, 0.80-0.903,4, 0.80-0.931,3, 82.1-89.33,5, 73.3-92.33,6 | [113] |
16 | Morshid A | Multiphasic CT scans, BCLC stage | CNN, RF | 105 patients | Classify TACE-susceptible from TACE-refractory HCC | 62.9-74.23,4, 0.7331,3 | [114] |
17 | Peng J | CT imaging | CNN | 562/897/1387 | Classification of complete response, partial response, stable disease, and progressive disease following TACE | 84.02,4, 0.95-0.971,2, 82.8-85.14,7, 0.94-0.981,7 | [115] |
18 | Abajian A | MRI imaging, clinical data | RF | 36 patients | Classification of responders and non-responders following TACE | 663,4, 62.53,5, 67.93,6 | [116] |
19 | Zhu Y | FF-OCT | SVM | 285 en face images | Cancerous hepatic cell identification | 0.93781,7 | [117] |
20 | Liang Z | X-ray imaging | CNN | 2943/15423/14427 images | Localization of fiducial markers | 98.64,7 | [118] |
21 | Liu Y | CT/MRI imaging | Dense-cycle GAN | 21 patients | Identify differences between synthetic CT and CT, and compare their dose distribution | - | [119] |
22 | Taebi A | Computational fluid dynamics | CNN | 3804 samples | Yttrium-90 distribution in radioembolization | Mean square error: 0.54 ± 0.14 | [120] |
23 | Tong Z | DNA profiling | SVM | 43 patients | Drug target prediction | 0.8827-0.88491,3, 53-65.443,5, 88.76-93.633,6 | [121] |
- Citation: Christou CD, Tsoulfas G. Role of three-dimensional printing and artificial intelligence in the management of hepatocellular carcinoma: Challenges and opportunities. World J Gastrointest Oncol 2022; 14(4): 765-793
- URL: https://www.wjgnet.com/1948-5204/full/v14/i4/765.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v14.i4.765