Copyright
©The Author(s) 2025.
World J Gastrointest Endosc. Apr 16, 2025; 17(4): 103391
Published online Apr 16, 2025. doi: 10.4253/wjge.v17.i4.103391
Published online Apr 16, 2025. doi: 10.4253/wjge.v17.i4.103391
Table 2 Summary of artificial intelligence-based prediction models for computed tomography scan in clinical studies
Clinical data availability | AI agorithm | Equipment | Reference sandard | Outcome masured | AUC | Ref. |
With clinical data | Boruta, gradient-boosting classifier | Siemens, GE | Surgical resection | Residual ALN metastasis | 0.866 | |
Lasso regression | Philips | Surgical resection | SLN metastasis | 0.95 | [93,94] | |
CNN-fast and CNN | GE, Philips | Surgical resection | SLN metastasis | 0.817 | ||
Without or insufficient clinical data | DCNNs | 18FDG-PET/CT (Philips, GE) | Surgical resection | ALN metastasis | 0.868 | |
DA-VGG19 | GE, Philips | Surgical resection | ALN metastasis | 0.9694 | ||
DT, RF, NB, SVM, ANN | Philips | Surgical resection | ALN metastasis | 0.86 | ||
XGBoost | 18FDG-PET/CT (GE) | Surgical resection | ALN metastasis | 0.89 |
- Citation: Gadour E, Miutescu B, Hassan Z, Aljahdli ES, Raees K. Advancements in the diagnosis of biliopancreatic diseases: A comparative review and study on future insights. World J Gastrointest Endosc 2025; 17(4): 103391
- URL: https://www.wjgnet.com/1948-5190/full/v17/i4/103391.htm
- DOI: https://dx.doi.org/10.4253/wjge.v17.i4.103391