Review
Copyright ©The Author(s) 2017.
World J Hepatol. Jan 8, 2017; 9(1): 1-17
Published online Jan 8, 2017. doi: 10.4254/wjh.v9.i1.1
Table 3 Utility of significantly altered (P < 0.05) metabolites in accurately predicting hepatocellular carcinoma (hepatocellular carcinoma cases vs patients with cirrhosis)
Ref.PlatformComparisonClass prediction methodologyClassification accuracy or sensitivity/specificityAFP sensitivity/specificity
Patterson et al[29]UPLC/ESI-QTOF-MSHCC (n = 20) vs cirrhosis (n = 7)Random forest96.3-
Chen et al[30]Integrated GC/QTOF-MS + UPLC/QTOF-MSHCC (n = 82) vs healthy (n = 71)OPLS-DA100.0-
Wu et al[31]SELDI-TOF MSHCC (n = 48) vs cirrhosis (n = 54) or healthy (n = 42)GRO-α + thrombin light chain PS20 Protein immunoassay89.6/89.669/83
Cao et al[32]UPLC/QTOF-MSHCC (n = 23) vs cirrhosis (n = 22)PLS-DA67.0-
Gao et al[33]NMRHCC (n = 39) vs cirrhosis (n = 36)PLS-DA45.7-
Wu et al[34]GC/MSHCC (n = 20) vs healthy (n = 20)PCA with ROC curve analysisAUC=88.3; AUCAFP = 92.5 when combined with AFP-
Soga et al[35]LC/MS-MSHCC (n = 32) vs HCV-only (n = 35) or cirrhosis (n = 18)Multiple logistic regression; ROC curve analysis88.10.760
Wang et al[38]UPLC-MSHCC (59) vs cirrhosis (20) or NHC (20)PLS-DA, ROC curve analysisCSA 79.3/100 CSA + AFP20 96.4/100 UPLC-MS 100/100AFP20 74/38 AFP200 52/90
Zhou et al[39]UPLC-QTOF-MSHCC (n = 69) vs cirrhosis (n = 28)PLS-DA, ROC curve analysisAEA 88.0 PEA 82.0 AEA + PEA 88.0-
Nahon et al[40]NMRSmall HCC (n = 28) vs cirrhosis (n = 93); Large HCC (n = 33) vs cirrhosis (n = 93)OPLSSmall HCC: 61.0/100.0 Large HCC: 100.0/100.0-
Yin et al[41]RPLC/QTOF-MS; HILIC/QTOF-MSHCC (n = 25) vs cirrhosis (n = 24) or healthy (n = 25)OPLSRPLC: 61.8 HILIC: 57.0 RPLC + HILIC = 63.6-
Li et al[42]UPLC/QTOF-MSHCC (n = 8) vs cirrhosis (n = 6) or healthy (n = 6) (murine samples)OPLS-DA88.2-
Budhu et al[43]Training set1: GC/MS + UPLC/MS-MS; Testing set2: Affymetrix GeneChipTraining set: Stem-like aggressive HpSC-HCC (n = 15) vs Mature hepatocyte less aggressive MH-HCC (n = 15); Testing set: HpSC-HCC and MH-HCC (n = 217)Multivariate analysis172.0/83.0, AUC = 0.830 272.0/91.0, AUC = 0.860-
Fitian et al[45]UPLC/MS-MS + GC/MSHCC (n = 30) vs HCV-cirrhosis (n = 27)Random forest72% 12-HETE 73.3/69.2AFP20 63.3/83.6
ROC analysis15-HETE 83.3/59.3
Aspartate 100/51.9
Glycine 83.3/63.0
Serine 73.3/85.2
Phenylalanine 73.3/81.5
Homoserine 70.0/85.2
Sphingosine 58.3/86.7
Xanthine 63.3/88.9
2-Hydroxybutyrate 76.7/77.8
Gao et al[46]GC-TOF/MSHCC (n = 39) vs HBV-cirrhosis (n = 52)Random forest (validation set)96.8% in HCC vs HBV-cirrhosis 100% in HBV-cirrhosis vs HBV-
100% in HBV vs NHC
ROC analysis (validation set)100/95.2 HBV vs NC
83.3/100 HBV-cirrhosis vs HBV
76.9/83.3 HCC vs HBV-cirrhosis
Bayes discriminant function model (validation set)76.9% HCC 100% HBV-cirrhosis
94.1% HBV
100% NHC