Copyright
©The Author(s) 2025.
World J Hepatol. Mar 27, 2025; 17(3): 97767
Published online Mar 27, 2025. doi: 10.4254/wjh.v17.i3.97767
Published online Mar 27, 2025. doi: 10.4254/wjh.v17.i3.97767
Table 4 Comparison of performance and discriminative ability among the current model and other models, 95%CI
Cohort | Models | 3-year risk of PVT | 5-year risk of PVT | ||||
AUROC | C-index | P value | AUROC | C-index | P value | ||
Training cohort | ANN | 0.967 (0.960-0.974) | 0.954 | 0.975 (0.955–0.992) | 0.958 | ||
CTP | 0.593 (0.568-0.618) | 0.591 | < 0.001 | 0.602 (0.579-0.625) | 0.592 | < 0.001 | |
MELD | 0.530 (0.550-0.560) | 0.535 | < 0.001 | 0.555 (0.528-0.581) | 0.544 | < 0.001 | |
Validation cohort | ANN | 0.958 (0.944–0.973) | 0.941 | 0.973 (0.958–0.987) | |||
CTP | 0.541 (0.497-0.585) | 0.552 | < 0.001 | 0.547 (0.508-0.585) | 0.541 | < 0.001 | |
MELD | 0.539 (0.492-0.586) | 0.544 | < 0.001 | 0.553 (0.512-0.594) | 0.546 | < 0.001 |
- Citation: Meng PP, Xiong FX, Chen JL, Zhou Y, Liu XL, Ji XM, Jiang YY, Hou YX. Establish and validate an artificial neural networks model used for predicting portal vein thrombosis risk in hepatitis B-related cirrhosis patients. World J Hepatol 2025; 17(3): 97767
- URL: https://www.wjgnet.com/1948-5182/full/v17/i3/97767.htm
- DOI: https://dx.doi.org/10.4254/wjh.v17.i3.97767