Copyright
©The Author(s) 2022.
World J Hepatol. Mar 27, 2022; 14(3): 570-582
Published online Mar 27, 2022. doi: 10.4254/wjh.v14.i3.570
Published online Mar 27, 2022. doi: 10.4254/wjh.v14.i3.570
Logistic regression | Beta coeficient | OR | 95%CI | P value | |
Biological MELD score ≥ 25 | 0.194 | 1.999 | 1.586 | 2.503 | < 0.001 |
Pre-existing KD, n (%) | 0.115 | 1.279 | 0.916 | 1.686 | < 0.001 |
ECD (3 or more factors above) | 0.911 | 1.191 | 0.711 | 1.787 | 0.002 |
IOAH (bleeding/PRS), n (%) | 0.169 | 1.935 | 1.505 | 2.344 | < 0.001 |
MBT, n (%) | 0.125 | 1.830 | 1.428 | 2.241 | < 0.001 |
SL (mmol/L) ≥ 2.0 at the end of LT | 0.110 | 2.001 | 1.616 | 2.421 | < 0.001 |
- Citation: Bredt LC, Peres LAB, Risso M, Barros LCAL. Risk factors and prediction of acute kidney injury after liver transplantation: Logistic regression and artificial neural network approaches . World J Hepatol 2022; 14(3): 570-582
- URL: https://www.wjgnet.com/1948-5182/full/v14/i3/570.htm
- DOI: https://dx.doi.org/10.4254/wjh.v14.i3.570