Copyright
©The Author(s) 2021.
World J Hepatol. Jan 27, 2022; 14(1): 244-259
Published online Jan 27, 2022. doi: 10.4254/wjh.v14.i1.244
Published online Jan 27, 2022. doi: 10.4254/wjh.v14.i1.244
Univariable models | Multiple model | |||||
OR (95%CI) | P value1 | AUC | OR (95%CI) | P value1 | AUC | |
Minimum histogram gradient intensity | 3.82 (1.26-15.3) | 0.02 | 0.74 | 3.24 (1.05-12.00) | 0.04 | 0.80 |
Discretized intensity skewness | 0.33 (0.11-0.86) | 0.02 | 0.73 | |||
Skewness | 0.33 (0.11-0.86) | 0.02 | 0.73 | |||
Long run low grey level emphasis | 3.01 (1.16-9.26) | 0.02 | 0.73 | 2.84 (0.98-10.09) | 0.05 | |
Low grey level count emphasis | 3.01 (1.16-9.26) | 0.02 | 0.73 | |||
Low grey level run emphasis | 3.01 (1.16-9.26) | 0.02 | 0.73 | |||
Volume at intensity fraction 10% | 0.33 (0.11-0.86) | 0.02 | 0.73 | |||
Short run low grey level emphasis | 2.83 (1.08-8.81) | 0.03 | 0.71 |
- Citation: Rabe E, Cioni D, Baglietto L, Fornili M, Gabelloni M, Neri E. Can the computed tomography texture analysis of colorectal liver metastases predict the response to first-line cytotoxic chemotherapy? World J Hepatol 2022; 14(1): 244-259
- URL: https://www.wjgnet.com/1948-5182/full/v14/i1/244.htm
- DOI: https://dx.doi.org/10.4254/wjh.v14.i1.244