Minireviews
Copyright ©The Author(s) 2021.
World J Hepatol. Dec 27, 2021; 13(12): 1977-1990
Published online Dec 27, 2021. doi: 10.4254/wjh.v13.i12.1977
Table 2 Review of recently published studies where artificial intelligence-based algorithms have been applied to liver transplantation
Ref.
Dataset
Number
ML algorithms
Problem
Performance measures
Bertsimas et al[62], 2019STAR dataset-OCTPredict 3 mo waitlist mortality-OPOMROC curve
Cruz-Ramírez et al[63], 2013Spanish multi-center study-Radial basis function NNImprove donor-recipient matching using rule-based allocation—MPENSGA 2 algorithmAccuracy, minimum sensitivity, ROC curve, RMSE, Cohen’s kappa
Briceño et al[64], 2014Spanish multi-center study1003Neural Net Evolutionary ProgrammingImprove equity in donor-recipient matchingMultiple regression analysis, simple logistic regression analysis, ROC curve
Ayllón et al[73], 2018King’s College Hospital,United Kingdom + MADR-E, Spain1437ANNClassification, end-point (3 mo, 1 yr)ROC curve
Wadhwani et al[74], 2019UNOS1482RFClassification, end-point (3 yr)Chi-square test, t-test, Wilcoxon rank sum test
Dorado-Moreno et al[75], 2017King’s College Hospital, United Kingdom + MADR-E, Spain1492Ordinal ANNOrdinal classification, fourclassesMAE and the MZE, accuracy, GMS, AMAE
Guijo-Rubio et al[76], 2019UNOS39095Cox, SVM, GBSurvival timeC-index, ROC curve, concordance index ipcw
Lee et al[77], 2018Seoul National University Hospital1211Several ML methods compared, GBM found to be bestPrediction of AKI after liver transplantROC curve, accuracy
Lau et al[78], 2017Austin Hospital, Melbourne, Australia180RF, ANN, logistic regressionPredict 30-d risk of graft failureROC curve