Copyright
©The Author(s) 2021.
World J Hepatol. Oct 27, 2021; 13(10): 1417-1427
Published online Oct 27, 2021. doi: 10.4254/wjh.v13.i10.1417
Published online Oct 27, 2021. doi: 10.4254/wjh.v13.i10.1417
Table 4 The performance comparison of published machine learning models on non-alcoholic fatty liver disease prediction
Ref. | Type of data/country or territory of data | Number of train/ external testing data | Model | Accuracy (%) | AUC | Sensitivity (%) | Specificity (%) | F1 |
Sorino et al[33], 2020 | Population/Italy | 2920/50 | Support vector machine | 681 | N/A | 98.5 | 100 | N/A |
Wu et al[13], 2019 | Hospital/Taiwan | 577/NA | Random forest | 86.51 | 87.21 | 85.91 | N/A | |
Islam et al[36], 2018 | Hospital/Taiwan | 994/NA | Logistic regression | 701 | 74.11 | 64.91 | N/A | |
Ma et al[12], 2018 | Hospital/China | 10508/NA | Bayesian network | 82.921 | N/A | 67.51 | 87.81 | 0.6551 |
Perveen et al[14], 2018 | Primary care network/Canada | 64%/34% of | Decision trees | N/A | 0.73 | 73 | N/A | 0.67 |
Yip et al[15], 2017 | Hospital/Hong Kong | 500/442 | Ridge regression | 87 | 0.87 | 92 | 90 | N/A |
Birjandi et al[37], 2016 | Hospital/Iran | 359/1241 | Decision trees | 75 | 0.75 | 73 | 77 | N/A |
Our study | Population based/United States | 2265/970 | Ensemble of RUS boosted trees | 71.1 | 0.79 | 72.7 | 70.6 | 0.56 |
Coarse trees | 74.9% | 0.72 | 24.5% | 92% | 0.33 |
- Citation: Atsawarungruangkit A, Laoveeravat P, Promrat K. Machine learning models for predicting non-alcoholic fatty liver disease in the general United States population: NHANES database. World J Hepatol 2021; 13(10): 1417-1427
- URL: https://www.wjgnet.com/1948-5182/full/v13/i10/1417.htm
- DOI: https://dx.doi.org/10.4254/wjh.v13.i10.1417