Copyright
©The Author(s) 2021.
World J Hepatol. Oct 27, 2021; 13(10): 1417-1427
Published online Oct 27, 2021. doi: 10.4254/wjh.v13.i10.1417
Published online Oct 27, 2021. doi: 10.4254/wjh.v13.i10.1417
No. | Description | Accuracy (%) | AUC | PPV/precision (%) | NPV (%) | Sensitivity/recall (%) | Specificity (%) | F1 |
Machine learning models | ||||||||
1 | Ensemble of subspace discriminant | 77.7 | 0.78 | 66.7 | 78.8 | 23.7 | 96 | 0.35 |
2 | Coarse trees | 74.9 | 0.72 | 50.8 | 78.3 | 24.5 | 92 | 0.33 |
3 | Ensemble of RUS boosted trees | 71.1 | 0.79 | 45.5 | 88.4 | 72.7 | 70.6 | 0.56 |
NAFLD indices | ||||||||
4 | Fatty liver index | 68.6 | 0.74 | 42.4 | 86.6 | 68.6 | 68.6 | 0.52 |
5 | Hepatic steatosis index | 65.1 | 0.70 | 37.9 | 83.3 | 60.4 | 66.6 | 0.47 |
6 | Triglyceride and glucose index | 56.9 | 0.69 | 34.8 | 88.3 | 80.8 | 48.8 | 0.49 |
- Citation: Atsawarungruangkit A, Laoveeravat P, Promrat K. Machine learning models for predicting non-alcoholic fatty liver disease in the general United States population: NHANES database. World J Hepatol 2021; 13(10): 1417-1427
- URL: https://www.wjgnet.com/1948-5182/full/v13/i10/1417.htm
- DOI: https://dx.doi.org/10.4254/wjh.v13.i10.1417