Copyright
©The Author(s) 2021.
World J Hepatol. Oct 27, 2021; 13(10): 1417-1427
Published online Oct 27, 2021. doi: 10.4254/wjh.v13.i10.1417
Published online Oct 27, 2021. doi: 10.4254/wjh.v13.i10.1417
No. | Description | Accuracy (%) | AUC | PPV/precision (%) | NPV (%) | Sensitivity/recall (%) | Specificity (%) | F1 |
1 | Fine tree | 71.6 | 0.64 | 42.9 | 79.8 | 37.8 | 83.0 | 0.40 |
2 | Medium tree | 74.4 | 0.70 | 48.9 | 79.1 | 30.1 | 89.4 | 0.37 |
3 | Coarse tree | 76.0 | 0.68 | 55.1 | 78.9 | 26.4 | 92.7 | 0.36 |
4 | Linear discriminant | 78.0 | 0.75 | 61.1 | 80.9 | 35.5 | 92.4 | 0.45 |
5 | Logistic regression | 78.1 | 0.75 | 62.2 | 80.6 | 33.9 | 93.0 | 0.44 |
6 | Gaussian naïve Bayes | 75.1 | 0.74 | 50.8 | 81.1 | 40.2 | 86.8 | 0.45 |
7 | Kernel naïve Bayes | 72.7 | 0.73 | 46.8 | 85.1 | 60.1 | 76.9 | 0.53 |
8 | Linear SVM | 77.0 | 0.74 | 64.4 | 78.1 | 19.9 | 96.3 | 0.30 |
9 | Quadratic SVM | 77.4 | 0.70 | 59.9 | 80.1 | 31.8 | 92.8 | 0.42 |
10 | Cubic SVM | 72.8 | 0.64 | 45.1 | 79.6 | 35.3 | 85.5 | 0.40 |
11 | Fine Gaussian SVM | 74.7 | 0.67 | 74.7 | 100.0 | |||
12 | Medium Gaussian SVM | 77.5 | 0.74 | 63.9 | 79.0 | 25.3 | 95.2 | 0.36 |
13 | Coarse Gaussian SVM | 75.7 | 0.74 | 66.2 | 76.0 | 7.9 | 98.6 | 0.14 |
14 | Fine KNN | 68.9 | 0.58 | 38.0 | 78.9 | 36.9 | 79.7 | 0.37 |
15 | Medium KNN | 76.5 | 0.71 | 59.7 | 78.1 | 21.0 | 95.2 | 0.31 |
16 | Coarse KNN | 76.6 | 0.75 | 78.1 | 76.5 | 10.0 | 99.1 | 0.18 |
17 | Cosine KNN | 76.6 | 0.72 | 57.9 | 79.2 | 27.6 | 93.2 | 0.37 |
18 | Cubic KNN | 77.0 | 0.72 | 62.0 | 78.5 | 22.6 | 95.3 | 0.33 |
19 | Weighted KNN | 76.5 | 0.71 | 56.7 | 79.4 | 28.8 | 92.6 | 0.38 |
20 | Ensemble of boosted trees | 76.9 | 0.74 | 57.3 | 80.3 | 33.6 | 91.6 | 0.42 |
21 | Ensemble of bagged trees | 77.2 | 0.74 | 58.9 | 80.2 | 32.5 | 92.3 | 0.42 |
22 | Ensemble of subspace discriminant | 78.3 | 0.76 | 66.7 | 79.7 | 28.3 | 95.2 | 0.40 |
23 | Ensemble of subspace KNN | 75.5 | 0.69 | 54.7 | 77.2 | 16.4 | 95.4 | 0.25 |
24 | Ensemble of RUS boosted trees | 70.4 | 0.76 | 44.2 | 86.3 | 66.4 | 71.7 | 0.53 |
- Citation: Atsawarungruangkit A, Laoveeravat P, Promrat K. Machine learning models for predicting non-alcoholic fatty liver disease in the general United States population: NHANES database. World J Hepatol 2021; 13(10): 1417-1427
- URL: https://www.wjgnet.com/1948-5182/full/v13/i10/1417.htm
- DOI: https://dx.doi.org/10.4254/wjh.v13.i10.1417