Retrospective Study
Copyright ©The Author(s) 2021.
World J Hepatol. Oct 27, 2021; 13(10): 1417-1427
Published online Oct 27, 2021. doi: 10.4254/wjh.v13.i10.1417
Table 2 The performance comparison of machine learning models on training data
No.
Description
Accuracy (%)
AUC
PPV/precision (%)
NPV (%)
Sensitivity/recall (%)
Specificity (%)
F1
1Fine tree71.6 0.6442.979.837.883.00.40
2Medium tree74.4 0.7048.979.130.189.40.37
3Coarse tree76.0 0.6855.178.926.492.70.36
4Linear discriminant78.0 0.7561.180.935.592.40.45
5Logistic regression78.1 0.7562.280.633.993.00.44
6Gaussian naïve Bayes75.1 0.7450.881.140.286.80.45
7Kernel naïve Bayes72.7 0.7346.885.160.176.90.53
8Linear SVM77.0 0.7464.478.119.996.30.30
9Quadratic SVM77.4 0.7059.980.131.892.80.42
10Cubic SVM72.8 0.6445.179.635.385.50.40
11Fine Gaussian SVM74.7 0.6774.7100.0
12Medium Gaussian SVM77.5 0.7463.979.025.395.20.36
13Coarse Gaussian SVM75.7 0.7466.276.07.998.60.14
14Fine KNN68.9 0.5838.078.936.979.70.37
15Medium KNN76.5 0.7159.778.121.095.20.31
16Coarse KNN76.6 0.7578.176.510.099.10.18
17Cosine KNN76.6 0.7257.979.227.693.20.37
18Cubic KNN77.0 0.7262.078.522.695.30.33
19Weighted KNN76.5 0.7156.779.428.892.60.38
20Ensemble of boosted trees76.9 0.7457.380.333.691.60.42
21Ensemble of bagged trees77.2 0.7458.980.232.592.30.42
22Ensemble of subspace discriminant78.3 0.7666.779.728.395.20.40
23Ensemble of subspace KNN75.5 0.6954.777.216.495.40.25
24Ensemble of RUS boosted trees70.4 0.7644.286.366.471.70.53