Copyright
©The Author(s) 2021.
World J Hepatol. Oct 27, 2021; 13(10): 1417-1427
Published online Oct 27, 2021. doi: 10.4254/wjh.v13.i10.1417
Published online Oct 27, 2021. doi: 10.4254/wjh.v13.i10.1417
Training data (n = 2265) | Testing data (n = 970) | P value | |
Demographic | |||
Age (yr) | 43 (29) | 43.5 (28) | 0.328 |
Gender (male) (%) | 944 (41.68) | 428 (44.12) | 0.197 |
Race/ethnicity | |||
White (non-Hispanic) (%) | 959 (42.34) | 392 (40.41) | 0.308 |
Black (non-Hispanic) (%) | 627 (27.68) | 271 (27.94) | 0.882 |
Mexican American (%) | 576 (25.43) | 254 (26.19) | 0.652 |
Others (%) | 103 (4.55) | 53 (5.46) | 0.265 |
Body measurement | |||
Body mass index (kg/m2) | 26.4 (7.2) | 26.7 (7.4) | 0.120 |
Waist circumference (cm) | 93 (20.5) | 93.5 (20.8) | 0.182 |
Biochemistry tests | |||
Iron (ug/dL) | 73 (39) | 74 (39) | 0.098 |
Total iron-binding capacity (ug/dL) | 355 (72) | 356 (72) | 0.450 |
Transferrin saturation (%) | 20.5 (11.1) | 20.8 (11.8) | 0.329 |
Ferritin (ng/mL) | 87 (125) | 84.5 (124) | 0.508 |
Cholesterol (mg/dL) | 201 (57) | 204 (59) | 0.155 |
Triglyceride (mg/dL) | 120 (100.25) | 122.5 (102) | 0.562 |
HDL cholesterol (mg/dL) | 48 (18) | 48.5 (18) | 0.585 |
C-reactive protein (mg/dL) | 0.21 (0.29) | 0.21 (0.23) | 0.686 |
Uric acid (mg/dL) | 5 (1.9) | 5.1 (2) | 0.427 |
Liver chemistry | |||
Aspartate aminotransferase (U/L) | 19 (8) | 19 (7) | 0.908 |
Alanine aminotransferase (U/L) | 14 (10) | 14 (10) | 0.581 |
Gamma glutamyl transferase (U/L) | 21 (18) | 21 (18) | 0.787 |
Alkaline phosphatase (U/L) | 83 (33) | 81 (32) | 0.524 |
Total bilirubin (mg/dL) | 0.5 (0.2) | 0.5 (0.2) | 0.855 |
Total protein (g/dL) | 7.4 (0.6) | 7.4 (0.6) | 0.559 |
Albumin (g/dL) | 4.1 (0.5) | 4.1 (0.4) | 0.543 |
Serum globulin (g/dL) | 3.3 (0.6) | 3.3 (0.7) | 0.941 |
Diabetes testing profile | |||
Glycated hemoglobin (%) | 5.4 (0.8) | 5.4 (0.7) | 0.075 |
Fasting plasma glucose (mg/dL) | 91.6 (12.52) | 92.05 (12.2) | 0.726 |
Fasting C-peptide (pmol/mL) | 0.65 (0.68) | 0.66 (0.69) | 0.746 |
Fasting insulin (uU/mL) | 9.36 (9.51) | 9.73 (10.04) | 0.378 |
Diabetes medication | 165 (7.28%) | 68 (7.01%) | 0.782 |
- Citation: Atsawarungruangkit A, Laoveeravat P, Promrat K. Machine learning models for predicting non-alcoholic fatty liver disease in the general United States population: NHANES database. World J Hepatol 2021; 13(10): 1417-1427
- URL: https://www.wjgnet.com/1948-5182/full/v13/i10/1417.htm
- DOI: https://dx.doi.org/10.4254/wjh.v13.i10.1417