Copyright
©The Author(s) 2023.
World J Stem Cells. Jul 26, 2023; 15(7): 751-767
Published online Jul 26, 2023. doi: 10.4252/wjsc.v15.i7.751
Published online Jul 26, 2023. doi: 10.4252/wjsc.v15.i7.751
Figure 1 Processing and culturing of human umbilical cord tissue.
A: Demonstration of the pictographic representation of human umbilical cord processing; B: Show cord tissue comprises one vein and two arteries surrounded by Wharton's jelly; C-F: Shows fibroblast-like morphology of mesenchymal stem cells at 4 × and 10 × magnifications at P0 (C and D), while P0 at a later stage shows elongated fibroblast-like morphology, which is interconnected with their extensions and is arranged in colonies (E and F). MSCs: Mesenchymal stem cells.
- Citation: Sahibdad I, Khalid S, Chaudhry GR, Salim A, Begum S, Khan I. Zinc enhances the cell adhesion, migration, and self-renewal potential of human umbilical cord derived mesenchymal stem cells. World J Stem Cells 2023; 15(7): 751-767
- URL: https://www.wjgnet.com/1948-0210/full/v15/i7/751.htm
- DOI: https://dx.doi.org/10.4252/wjsc.v15.i7.751