Basic Study
Copyright ©The Author(s) 2020.
World J Stem Cells. Aug 26, 2020; 12(8): 857-878
Published online Aug 26, 2020. doi: 10.4252/wjsc.v12.i8.857
Figure 3
Figure 3 Effects of human embryonic stem cell-derived mesenchymal stem cells and bone marrow-derived mesenchymal stem cells transplantation in mice with premature ovarian failure. A: Transplantation of embryonic stem cell-derived mesenchymal stem cells (ES-MSCs) and/or bone marrow-derived mesenchymal stem cells (BM-MSCs) improved body weights in mice with premature ovarian failure after 4 wk; B: Survival rate 4 wk after ES-MSCs and/or BM-MSCs transplantation. Survival rate significantly increased in both the ES-MSCs and/or BM-MSCs transplanted mice (more than 60%) compared with the vehicle group (20%); C: The follicle number increased after transplantation. The number of follicles at all stages of development in both cell transplanted groups was significantly higher than that of the vehicle mice, while it was lower than the intact mice; D, E: Both cell transplantations rescued hormone secretion in premature ovarian failure mice. Serum follicle stimulating hormone levels decreased significantly in both cell transplanted groups compared to the vehicle group. The serum estradiol level significantly recovered after both cell transplantations compared to the vehicle group. All data are presented as mean ± standard error. Small letters (a, c) indicate the significance (P < 0.05) compared to groups labeled by similar capital letters (A, C); aP < 0.05 significance of experimental groups vs the intact group; cP < 0.05 significance of ES-MSC and BM-MSC groups vs the vehicle group; n= 3-5. ES-MSCs: Embryonic stem cell-derived mesenchymal stem cells; BM-MSCs: Bone marrow-derived mesenchymal stem cells; POF: Premature ovarian failure; FSH: Follicle stimulating hormone; E2: Estradiol.