Review
Copyright ©The Author(s) 2020.
World J Stem Cells. Nov 26, 2020; 12(11): 1255-1275
Published online Nov 26, 2020. doi: 10.4252/wjsc.v12.i11.1255
Table 1 Biomechanical property changes of diabetic tendinopathy
Species
Tendon(s)
Groups
Duration of DM
Biomechanical properties of diabetic tendons
Ref.
HumanAchilles tendonCG and DGAn average of 14 yrSignificantly less tendon elongation, higher tendon stiffness and hysteresis, and lower tendon forces in DM group during walking compared with CG.Petrovic et al[23], 2018
HumanAchilles tendonCG and DGAn average of 13 yrNo significance in maximum force including max force, stiffness, stress, strain, and modulus between DG and CG, but a trend towards reduced tendon strain in DG; significantly higher tendon modulus in common force in DG than in CG.Couppé et al[24], 2016
HumanAchilles tendonCG and DG Stage V type II diabetes patientsSignificantly inferior biomechanical properties of diabetic tendons in DG including decreased elasticity (Young′s modulus), maximum load, stiffness, toughness, load at yield point, energy, strain, and elongation at break point, tenacity, and strain at automatic load drop.Guney et al[17], 2015
HumanAchilles tendonCG, DG I (with foot ulcer), and DG II (without foot ulcer).An average of 15 yr in DG I and an average of 6 yr in DG II.Significantly higher thickness of proximal, medial, and distal third tendon in DG I than in DG II and CG, higher tendon thickness in DG II than in CG but no significance; significantly reduced stiffness of medial and distal third tendon in DG I.Evranos et al[22], 2015
Male C57Bl/6J miceFDL tendonCG (low fat diet) and DM (high fat diet) High or low-fat diet for 48 wk; at 12, 24, and 48 d post-injury.Significantly decreased tendon range of motion at 40 and 48 wk in high fat diet group relative to low fat diet group; reduced max load at failure at 48 wk and increased stiffness at 24 wk in high fat diet group.Studentsova et al[30], 2018
Male C57Bl/6J miceFDL tendonCG (low fat diet) and DM (high fat diet) High or low-fat diet for 12 wk; at 10, 14, 21, and 28 d post-diet initiation.Significantly lower maximum load, yield load, and energy to maximum force of tendon in DM compared with CG at 28 d; no differences in stiffness between the two groups.Ackerman et al[31], 2017
Male C57BL/KsJ (db/db) miceAchilles tendonCG and DG16 wk of DMSignificantly decreased maximum load, elastic modulus, maximum stress, and stiffness of tendons in DG; no significance in tensile strain.Boivin et al[16], 2014
db/db Diabetic mice and db/+ non-diabetic heterozygous control miceSupraspinatus, Achilles, and patellar tendons.CG and DG60 days for DMSignificantly reduced stiffness at the insertion site of tendons in DG for all three tendons and reduced modulus at the insertion site of Achilles tendons in DG; no significance in stiffness or modulus of mid-substance in any tendon between DG and CG.Connizzo et al[33], 2014
Male C57BL/6J miceFDL tendonCG (low fat diet) and DG (high fat diet) High or low-fat diet for 12 wk for uninjured tendons; high or low-fat diet for 24 wk for injured tendons, at 7, 14, and 28 d post-injury.No significance in biomechanical parameters including maximum force, work to maximum force, and stiffness of uninjured FDL tendon at 12 wk; reduced maximum force of uninjured FDL tendon at 24 wk; significantly decreased biomechanical parameters of injured tendons in DG at 28 d.David et al[32], 2014
Wistar ratsAchilles tendonCG and DG4 wk post-induction; 3 wk post-operation.No significance in ultimate load, ultimate elongation, stiffness, ultimate strength, ultimate strain, elastic modulus, and cross-sectional area.de Oliveira et al[36], 2019
Wistar ratsAchilles tendonCG and DG 5 wk post-inductionSignificantly increased elastic modulus and maximum tension, reduced transverse area in DG; no significance in maximum strength between DG and CG.Bezerra et al[27], 2016
SD ratsAchilles and tail tendonCG, acute DG (1 wk), and chronic DG (10 wk)10 wk post-inductionNo significance in biomechanical properties of Achilles and tail tendons between groups, including maximum force, deformation, stiffness, stress, strain, and Young’s modulus.Volper et al[12], 2015
Wistar ratsAchilles tendonCG and DG30 d post-induction; at days 10 post-surgery.Significantly decreased stress tensile load and Young's modulus of stiffness of tendons in DG than in CG.Mohsenifar et al[20], 2014
ZDSD and control rats (CD: SD-derived)Tail tendonCG and DGHigh fat diet for 12 wkSignificantly higher nanoscale modulus at tendon fibrils level in DG and more variable compared with CG; at the fascicle level, no significance in mechanical properties between DG and CG; at the material level, significantly greater ultimate stress and modulus in DG tendon than in CG.Gonzalez et al[28], 2014
SD ratsSupraspinatus tendonHyperglycemia group and control group8 wk following hyperglycemia inductionNo significance in stiffness and modulus at both the insertion site and mid-substance of tendon between hyperglycemia group and control group.Thomas et al[35], 2014
Lewis ratsAchilles tendonCG and DG5 d post-inductionSignificantly reduced maximum tensile load of tendon in DG.Lehner et al[19], 2012
Male diabetic GK rats and control Wistar ratsAchilles tendonCG and DG1 year of DM; at 14 d post-rupture.No significance in biomechanical properties as peak load, energy at peak load and stress, except for lower stiffness of intact tendons in DG; lower stiffness of injured tendons in DG compared with the injured tendons in CG.Ahmed et al[21], 2012
Wistar ratsAchilles tendonCG and DG 70 d post-inductionSignificantly decreased elastic modulus of tendon in DG; increased specific deformation, deformation at maximum force and energy/tendon area of tendon in DG.de Oliveira et al[26], 2012
Wistar ratsAchilles tendonCG and DG 70 d post-inductionSignificantly decreased elastic modulus of tendon in DG; increased specific strain, maximum strain and energy/tendon area of tendon in DG.de Oliveira et al[25], 2011
Lewis ratsPatellar tendonCG and DG12- and 19-d post-inductionSignificantly reduced Young′s modulus of tendon in DG at both time points.Fox et al[15], 2011
Lewis ratsSupraspinatus tendonCG and DG1 and 2 wk post-operationSignificantly reduced mean load-to-failure and stiffness of tendon-bone complex in DG at both time points.Bedi et al[34], 2010
New Zealand rabbitsAchilles tendonNon-glycated group and glycated group60 d following glycationSignificant increase in maximum load, Young′s modulus of elasticity, energy to yield, and toughness of glycated tendon.Reddy et al[29], 2003