临床研究
Copyright ©The Author(s) 2025.
世界华人消化杂志. 2025-03-28; 33(3): 199-206
在线出版 2025-03-28. doi: 10.11569/wcjd.v33.i3.199
表3 10种机器学习模型构建肝硬化患者发生院内感染的性能评估
AUC(95%CI)准确率精确率召回率F1-score
Logistic0.889(0.845-0.933)0.7380.550.9530.697
SVM0.892(0.848-0.935)0.7430.5560.9380.698
GBM0.885(0.838-0.932)0.7520.5690.9060.699
NeuralNetwork0.889(0.844-0.933)0.7820.6160.8280.707
RandomForest0.821(0.762-0.881)0.8370.9150.6720.775
Xgboost0.882(0.832-0.932)0.7620.580.9060.707
KNN0.928(0.894-0.963)0.8510.750.7970.773
Adaboost0.806(0.741-0.871)0.7920.7040.5940.644
LightGBM0.948(0.920-0.975)0.8760.6870.8910.776
CatBoost0.874(0.826-0.921)0.7720.5980.8590.705

引文著录: 顾晓菲, 梁晓洁, 董金玲. 基于机器学习构建肝硬化患者院内感染风险预测模型. 世界华人消化杂志 2025; 33(3): 199-206