Copyright
©The Author(s) 2025.
World J Gastroenterol. Mar 7, 2025; 31(9): 101383
Published online Mar 7, 2025. doi: 10.3748/wjg.v31.i9.101383
Published online Mar 7, 2025. doi: 10.3748/wjg.v31.i9.101383
Table 3 Diagnostic performance of the Extreme Gradient Boosting model and other non-invasive diagnosis models for advanced liver fibrosis
Cohort | Models | Accuracy | Area under receiver operating characteristic curve | Sensitivity | Specificity | Positive predictive value | Negative predictive value | P value |
Training | XGB | 0.810 (0.764-0.841) | 0.934 (0.914-0.955) | 0.958 | 0.744 | 0.786 | 0.914 | |
XGB + LSM | 0.844 (0.7815-0.898) | 0.977 (0.966-0.980) | 0.985 | 0.758 | 0.837 | 0.929 | < 0.001 | |
APRI | 0.715 (0.674-0.753) | 0.803 (0.765-0.841) | 0.907 | 0.402 | 0.711 | 0.727 | < 0.001 | |
FIB-4 | 0.734 (0.774-0.848) | 0.811 (0.774-0.848) | 0.898 | 0.467 | 0.732 | 0.738 | < 0.001 | |
Validation | XGB | 0.794 (0.765-0.862) | 0.917 (0.880-0.953) | 0.925 | 0.658 | 0.756 | 0.884 | |
XGB + LSM | 0.821 (0.755-0.880) | 0.970 (0.950-0.990) | 0.954 | 0.739 | 0.81 | 0.908 | < 0.001 | |
APRI | 0.710 (0.646-0.769) | 0.737 (0.669-0.805) | 0.917 | 0.329 | 0.715 | 0.684 | < 0.001 | |
FIB-4 | 0.688 (0.622-0.748) | 0.752 (0.687-0.816) | 0.912 | 0.165 | 0.681 | 0.765 | < 0.001 |
- Citation: Xiong FX, Sun L, Zhang XJ, Chen JL, Zhou Y, Ji XM, Meng PP, Wu T, Wang XB, Hou YX. Machine learning-based models for advanced fibrosis in non-alcoholic steatohepatitis patients: A cohort study. World J Gastroenterol 2025; 31(9): 101383
- URL: https://www.wjgnet.com/1007-9327/full/v31/i9/101383.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i9.101383