Copyright
©The Author(s) 2025.
World J Gastroenterol. Mar 7, 2025; 31(9): 101383
Published online Mar 7, 2025. doi: 10.3748/wjg.v31.i9.101383
Published online Mar 7, 2025. doi: 10.3748/wjg.v31.i9.101383
Table 2 Diagnostic performance of the machine learning models for moderate to advanced liver fibrosis
Cohort | Models | Accuracy | Area under receiver operating characteristic curve | F1 scores | Sensitivity | Specificity | Positive predictive value | Negative predictive value | P value |
Training | XGB | 0.862 (0.830-0.891) | 0.934 (0.914-0.955) | 0.838 | 0.958 | 0.744 | 0.856 | 0.876 | |
RF | 0.877 (0.846-0.904) | 0.857 (0.825-0.888) | 0.817 | 0.944 | 0.72 | 0.869 | 0.894 | < 0.001 | |
SVM | 0.8199 (0.784-0.852) | 0.773 (0.738-0.809) | 0.724 | 0.969 | 0.578 | 0.789 | 0.92 | < 0.001 | |
LR | 0.784 (0.746-0.818) | 0.805 (0.764-0.846) | 0.715 | 0.901 | 0.593 | 0.782 | 0.787 | < 0.001 | |
NB | 0.385 (0.343-0.428) | 0.503 (0.499-0.575) | 0.012 | 0.006 | 1 | 1 | 0.383 | < 0.001 | |
Validation | XGB | 0.853 (0.799-0.896) | 0.917 (0.880-0.953) | 0.78 | 0.959 | 0.658 | 0.837 | 0.897 | |
RF | 0.875 (0.824-0.915) | 0.840 (0.788-0.892) | 0.758 | 0.959 | 0.626 | 0.863 | 0.905 | < 0.001 | |
SVM | 0.813 (0.755-0.861) | 0.740 (0.684-0.796) | 0.658 | 0.986 | 0.494 | 0.784 | 0.951 | < 0.001 | |
LR | 0.790 (0.731-0.842) | 0.745 (0.669-0.821) | 0.641 | 0.959 | 0.481 | 0.772 | 0.864 | < 0.001 | |
NB | 0.357 (0.294-0.424) | 0.503 (0.495-0.510) | 0.014 | 0.007 | 1 | 1 | 0.354 | < 0.001 |
- Citation: Xiong FX, Sun L, Zhang XJ, Chen JL, Zhou Y, Ji XM, Meng PP, Wu T, Wang XB, Hou YX. Machine learning-based models for advanced fibrosis in non-alcoholic steatohepatitis patients: A cohort study. World J Gastroenterol 2025; 31(9): 101383
- URL: https://www.wjgnet.com/1007-9327/full/v31/i9/101383.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i9.101383