Copyright
©The Author(s) 2025.
World J Gastroenterol. Feb 28, 2025; 31(8): 102071
Published online Feb 28, 2025. doi: 10.3748/wjg.v31.i8.102071
Published online Feb 28, 2025. doi: 10.3748/wjg.v31.i8.102071
Figure 2 Flowchart: Method for sample selection, model training, validation, feature selection, and determination of the final model.
The overall process of data extraction, training, and testing. AMY: Amylase; CT: Computed tomography; LR: Logistic regression; RF: Random forest; GBDT: Gradient boosting decision tree; LGBM: Light gradient boosting machine; XGBoost: Extreme gradient boosting; CatBoost: Category boosting; RFE: Recursive feature elimination; SHAP: Shapley additive explanation.
- Citation: Ma JM, Wang PF, Yang LQ, Wang JK, Song JP, Li YM, Wen Y, Tang BJ, Wang XD. Machine learning model-based prediction of postpancreatectomy acute pancreatitis following pancreaticoduodenectomy: A retrospective cohort study. World J Gastroenterol 2025; 31(8): 102071
- URL: https://www.wjgnet.com/1007-9327/full/v31/i8/102071.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i8.102071