Copyright
©The Author(s) 2025.
World J Gastroenterol. Feb 28, 2025; 31(8): 102071
Published online Feb 28, 2025. doi: 10.3748/wjg.v31.i8.102071
Published online Feb 28, 2025. doi: 10.3748/wjg.v31.i8.102071
Table 4 Performance of different models for predicting postpancreatectomy acute pancreatitis
Model | Training AUC | Testing AUC | Specificity | Sensitivity | MCC | Kappa | NPV | PPV |
LR | 0.605 | 0.69 | 0.524 | 0.857 | 0.295 | 0.214 | 0.943 | 0.286 |
RF | 0.824 | 0.815 | 0.508 | 1 | 0.398 | 0.273 | 1 | 0.311 |
GBDT | 0.875 | 0.735 | 0.81 | 0.643 | 0.392 | 0.379 | 0.911 | 0.429 |
XGBoost | 0.871 | 0.706 | 0.762 | 0.714 | 0.392 | 0.365 | 0.923 | 0.4 |
LGBM | 0.87 | 0.73 | 0.746 | 0.714 | 0.375 | 0.345 | 0.922 | 0.385 |
CatBoost | 0.859 | 0.822 | 0.667 | 0.857 | 0.408 | 0.343 | 0.955 | 0.364 |
- Citation: Ma JM, Wang PF, Yang LQ, Wang JK, Song JP, Li YM, Wen Y, Tang BJ, Wang XD. Machine learning model-based prediction of postpancreatectomy acute pancreatitis following pancreaticoduodenectomy: A retrospective cohort study. World J Gastroenterol 2025; 31(8): 102071
- URL: https://www.wjgnet.com/1007-9327/full/v31/i8/102071.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i8.102071