Copyright
©The Author(s) 2025.
World J Gastroenterol. Feb 7, 2025; 31(5): 101722
Published online Feb 7, 2025. doi: 10.3748/wjg.v31.i5.101722
Published online Feb 7, 2025. doi: 10.3748/wjg.v31.i5.101722
Figure 1 Modeling process.
A: Top ten most important predictors based on random survival forests (RSF) analysis: Importance scores; B: Error rate and out-of-bag variable importance ranking from the RSF analysis; C: Predictors based on RSF analysis; D: Construction and specific structure of the artificial neural networks model. LMR: Lymphocyte-to-monocyte ratio; PLR: Platelet-to-lymphocyte ratio; ALBI: Albumin-bilirubin; AFP: Alpha-Fetoprotein; INR: International normalized ratio.
- Citation: Zhang Y, Shi K, Feng Y, Wang XB. Machine learning model using immune indicators to predict outcomes in early liver cancer. World J Gastroenterol 2025; 31(5): 101722
- URL: https://www.wjgnet.com/1007-9327/full/v31/i5/101722.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i5.101722