Retrospective Study
Copyright ©The Author(s) 2025.
World J Gastroenterol. Jan 21, 2025; 31(3): 102283
Published online Jan 21, 2025. doi: 10.3748/wjg.v31.i3.102283
Table 2 Diagnostic performance of the radiomic signature based on different machine learning models in the training and test cohorts
Model

AUC (95%CI)
ACC
SENS
SPEC
PPV
NPV
LRTraining0.950 (0.893-1.000)0.9270.8420.9720.9410.921
Test0.806 (0.598-1.000)0.7221.0000.5830.5451.000
SVMTraining0.959 (0.887-1.000)0.9640.9470.9720.9470.972
Test0.944 (0.843-1.000)0.8890.8330.9170.8330.917
ExtraTreesTraining0.965 (0.915-1.000)0.9450.8950.9720.9440.946
Test0.917 (0.783-1.000)0.8331.0000.7500.6671.000
XGBoostTraining0.971 (0.938-1.000)0.9090.9470.8890.8180.970
Test0.882 (0.741-1.000)0.7781.0000.6670.6001.000
LightGBMTraining0.932 (0.863-1.000)0.8910.8950.9140.8100.941
Test0.750 (0.506-0.994)0.6671.0000.5000.5001.000