Copyright
©The Author(s) 2025.
World J Gastroenterol. Apr 14, 2025; 31(14): 104280
Published online Apr 14, 2025. doi: 10.3748/wjg.v31.i14.104280
Published online Apr 14, 2025. doi: 10.3748/wjg.v31.i14.104280
Table 5 The performance metrics
Algorithm types | Accuracy | Specificity | Sensitivity | F1 score |
PLS-Transformer | 93.30 ± 2.53 | 96.65 ± 1.27 | 93.30 ± 2.54 | 93.17 ± 2.67 |
PLS-ResNet18 | 88.52 ± 5.44 | 94.28 ± 2.72 | 88.51 ± 5.50 | 88.57 ± 5.38 |
PLS-LSTM | 80.18 ± 5.60 | 90.06 ± 3.11 | 80.09 ± 6.79 | 78.80 ± 6.43 |
PLS-GRU | 88.58 ± 7.39 | 94.22 ± 4.02 | 88.47 ± 7.63 | 87.87 ± 7.46 |
PLS-EfficientNet | 81.01 ± 6.10 | 90.64 ± 3.32 | 81.94 ± 5.91 | 80.72 ± 5.64 |
PLS-DenseNet | 90.79 ± 3.94 | 95.29 ± 2.15 | 90.73 ± 4.09 | 90.62 ± 3.68 |
PLS-SVM | 87.46 ± 7.51 | 94.04 ± 2.89 | 87.20 ± 7.16 | 87.30 ± 7.20 |
PLS-XGB | 74.27 ± 5.86 | 85.00 ± 4.03 | 74.36 ± 5.09 | 74.4 ± 5.5 |
- Citation: Yu XY, Chen J, Li LY, Chen FE, He Q. Rapid pathologic grading-based diagnosis of esophageal squamous cell carcinoma via Raman spectroscopy and a deep learning algorithm. World J Gastroenterol 2025; 31(14): 104280
- URL: https://www.wjgnet.com/1007-9327/full/v31/i14/104280.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i14.104280