Copyright
©The Author(s) 2025.
World J Gastroenterol. Apr 14, 2025; 31(14): 104280
Published online Apr 14, 2025. doi: 10.3748/wjg.v31.i14.104280
Published online Apr 14, 2025. doi: 10.3748/wjg.v31.i14.104280
Table 4 Results for the accuracy, specificity, sensitivity, and F1 score produced by each of the ten models in the pathology grading task
Classification | Model | Accuracy | Specificity | Sensitivity | F1 score |
Histologic grading | Model 1 | 94.12 | 97.04 | 93.94 | 93.89 |
Model 2 | 91.67 | 95.83 | 91.68 | 91.77 | |
Model 3 | 97.22 | 98.61 | 97.22 | 97.22 | |
Model 4 | 88.89 | 94.44 | 88.89 | 88.57 | |
Model 5 | 94.44 | 97.22 | 94.44 | 94.41 | |
Model 6 | 94.29 | 97.10 | 94.44 | 94.41 | |
Model 7 | 94.44 | 97.22 | 94.44 | 94.30 | |
Model 8 | 88.89 | 94.44 | 88.89 | 88.30 | |
Model 9 | 94.44 | 97.22 | 94.44 | 94.30 | |
Model 10 | 94.59 | 97.33 | 94.66 | 94.56 |
- Citation: Yu XY, Chen J, Li LY, Chen FE, He Q. Rapid pathologic grading-based diagnosis of esophageal squamous cell carcinoma via Raman spectroscopy and a deep learning algorithm. World J Gastroenterol 2025; 31(14): 104280
- URL: https://www.wjgnet.com/1007-9327/full/v31/i14/104280.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i14.104280