Copyright
©The Author(s) 2025.
World J Gastroenterol. Mar 21, 2025; 31(11): 102387
Published online Mar 21, 2025. doi: 10.3748/wjg.v31.i11.102387
Published online Mar 21, 2025. doi: 10.3748/wjg.v31.i11.102387
Figure 2 Receiver operating characteristic curves of different models across various datasets.
A: Training set; B: Validation set; C: Prospective set. LR: Logistic Regression; DT: Decision Trees; RF: Random Forest; SVM: Support Vector Machine; XGBoost: EXtreme Gradient Boosting; AUC: Area under the curve.
- Citation: Shi YH, Liu JL, Cheng CC, Li WL, Sun H, Zhou XL, Wei H, Fei SJ. Construction and validation of machine learning-based predictive model for colorectal polyp recurrence one year after endoscopic mucosal resection. World J Gastroenterol 2025; 31(11): 102387
- URL: https://www.wjgnet.com/1007-9327/full/v31/i11/102387.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i11.102387