Copyright
©The Author(s) 2025.
World J Gastroenterol. Mar 21, 2025; 31(11): 102387
Published online Mar 21, 2025. doi: 10.3748/wjg.v31.i11.102387
Published online Mar 21, 2025. doi: 10.3748/wjg.v31.i11.102387
Table 3 Comparison of the performance of different models in training set, validation set and prospective set
Model | AUC | Sensitivity | Specificity | Accuracy | Precision | F1 score | |
Training set | LR | 0.803 | 0.733 | 0.728 | 0.731 | 0.774 | 0.753 |
DT | 0.754 | 0.806 | 0.613 | 0.721 | 0.726 | 0.764 | |
RF | 0.861 | 0.727 | 0.835 | 0.775 | 0.849 | 0.784 | |
SVM | 0.808 | 0.720 | 0.753 | 0.734 | 0.788 | 0.752 | |
XGB | 0.909 | 0.756 | 0.904 | 0.820 | 0.907 | 0.824 | |
Validation set | LR | 0.809 | 0.743 | 0.686 | 0.719 | 0.756 | 0.750 |
DT | 0.799 | 0.785 | 0.723 | 0.758 | 0.788 | 0.786 | |
RF | 0.902 | 0.750 | 0.918 | 0.823 | 0.923 | 0.828 | |
SVM | 0.819 | 0.743 | 0.705 | 0.726 | 0.767 | 0.755 | |
XGB | 0.921 | 0.788 | 0.914 | 0.843 | 0.923 | 0.850 | |
Prospective set | LR | 0.779 | 0.568 | 0.847 | 0.711 | 0.780 | 0.657 |
DT | 0.812 | 0.765 | 0.729 | 0.747 | 0.765 | 0.747 | |
RF | 0.943 | 0.667 | 0.988 | 0.831 | 0.982 | 0.794 | |
SVM | 0.791 | 0.617 | 0.824 | 0.723 | 0.769 | 0.685 | |
XGB | 0.963 | 0.840 | 0.941 | 0.892 | 0.932 | 0.883 |
- Citation: Shi YH, Liu JL, Cheng CC, Li WL, Sun H, Zhou XL, Wei H, Fei SJ. Construction and validation of machine learning-based predictive model for colorectal polyp recurrence one year after endoscopic mucosal resection. World J Gastroenterol 2025; 31(11): 102387
- URL: https://www.wjgnet.com/1007-9327/full/v31/i11/102387.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i11.102387