Copyright
©The Author(s) 2025.
World J Gastroenterol. Mar 21, 2025; 31(11): 100911
Published online Mar 21, 2025. doi: 10.3748/wjg.v31.i11.100911
Published online Mar 21, 2025. doi: 10.3748/wjg.v31.i11.100911
Figure 1 The area under the curve of EXtreme Gradient Boosting model.
A: The results showed that the EXtreme Gradient Boosting (XGBoost) model has good prediction effect in the train group [area under the curve (AUC) = 0.882]; B: The XGboost model has good prediction effect in validation group (AUC = 0.834). AUC: Area under the curve.
- Citation: Huang TF, Luo C, Guo LB, Liu HZ, Li JT, Lin QZ, Fan RL, Zhou WP, Li JD, Lin KC, Tang SC, Zeng YY. Preoperative prediction of textbook outcome in intrahepatic cholangiocarcinoma by interpretable machine learning: A multicenter cohort study. World J Gastroenterol 2025; 31(11): 100911
- URL: https://www.wjgnet.com/1007-9327/full/v31/i11/100911.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i11.100911