Copyright
©The Author(s) 2024.
World J Gastroenterol. Feb 7, 2024; 30(5): 424-428
Published online Feb 7, 2024. doi: 10.3748/wjg.v30.i5.424
Published online Feb 7, 2024. doi: 10.3748/wjg.v30.i5.424
Figure 1 Construction of random survival forests model.
15 factors used to construct random survival forests model in hepatocellular carcinoma patients who underwent R0 resection with variable importance factors emergence and risk stratification applied. HCC: Hepatocellular carcinoma; AFP: Alpha-fetoprotein.
- Citation: Ravikulan A, Rostami K. Leveraging machine learning for early recurrence prediction in hepatocellular carcinoma: A step towards precision medicine. World J Gastroenterol 2024; 30(5): 424-428
- URL: https://www.wjgnet.com/1007-9327/full/v30/i5/424.htm
- DOI: https://dx.doi.org/10.3748/wjg.v30.i5.424