Copyright
©The Author(s) 2024.
World J Gastroenterol. Feb 7, 2024; 30(5): 424-428
Published online Feb 7, 2024. doi: 10.3748/wjg.v30.i5.424
Published online Feb 7, 2024. doi: 10.3748/wjg.v30.i5.424
Performance | Cohort | RSF | ERASL | Korean | AJCC TNM | BCLC | Chinese |
Model Discrimination: (Harrell’s C-Index) | Training | 0.725 | 0.706 | 0.658 | 0.674 | 0.635 | 0.684 |
Internal | 0.762 | 0.726 | 0.672 | 0.711 | 0.646 | 0.709 | |
External | 0.747 | 0.727 | 0.722 | 0.711 | 0.658 | 0.696 | |
Overall Performance: Time dependent Brier (2 years) | Training | 0.147 | 0.156 | 0.174 | 0.160 | 0.167 | 0.161 |
Internal | 0.129 | 0.143 | 0.159 | 0.144 | 0.154 | 0.146 | |
External | 0.156 | 0.162 | 0.161 | 0.169 | 0.180 | 0.176 | |
Clinical Usefulness: Net benefit at threshold 50% | Training | 0.166 | 0.154 | 0.093 | 0.139 | 0.137 | 0.137 |
Internal | 0.121 | 0.092 | 0.041 | 0.095 | 0.073 | 0.073 | |
External | 0.206 | 0.190 | 0.222 | 0.185 | 0.154 | 0.154 |
- Citation: Ravikulan A, Rostami K. Leveraging machine learning for early recurrence prediction in hepatocellular carcinoma: A step towards precision medicine. World J Gastroenterol 2024; 30(5): 424-428
- URL: https://www.wjgnet.com/1007-9327/full/v30/i5/424.htm
- DOI: https://dx.doi.org/10.3748/wjg.v30.i5.424