Copyright
©The Author(s) 2024.
World J Gastroenterol. Dec 28, 2024; 30(48): 5111-5129
Published online Dec 28, 2024. doi: 10.3748/wjg.v30.i48.5111
Published online Dec 28, 2024. doi: 10.3748/wjg.v30.i48.5111
Method | CBAM | SE | VIT | Swin Transformer | mAP50 | GFLOPS | FPS |
Method 1 | Y | N | N | N | 88.9 | 133.6 | 163.96 |
Method 2 | N | Y | N | N | 87.2 | 121.5 | 173.73 |
Method 3 | N | N | Y | N | 89.2 | 219.9 | 103.76 |
Method 4 | N | N | N | Y | 90.7 | 159.7 | 149.58 |
- Citation: Xiao ZG, Chen XQ, Zhang D, Li XY, Dai WX, Liang WH. Image detection method for multi-category lesions in wireless capsule endoscopy based on deep learning models. World J Gastroenterol 2024; 30(48): 5111-5129
- URL: https://www.wjgnet.com/1007-9327/full/v30/i48/5111.htm
- DOI: https://dx.doi.org/10.3748/wjg.v30.i48.5111