Review
Copyright ©The Author(s) 2024.
World J Gastroenterol. Oct 21, 2024; 30(39): 4267-4280
Published online Oct 21, 2024. doi: 10.3748/wjg.v30.i39.4267
Table 1 Artificial intelligence in endoscopic examination of esophageal squamous cell carcinoma
Ref.
Data sets
Endoscopic modality
Main study aim
AI algorithms
Best result
Yuan et al[37], 2022Image data set: 53933; images from 2621 patients; video data set: 142; videos from 19 patientsWLI, NM-NBI, ME -NBIDetection of superficial ESCCDCNNImage data set: Sensitivity: 92.5%-99.7%; specificity: 78.5%-89.0%; AUC: 0.906-0.989; video data set: Sensitivity: 89.5%-100%; specificity: 73.7%-89.5%
Zhao et al[38], 2019Image data set: 1383; images from 219 patientsME-NBIClassification of IPCLs FCNMean accuracy of senior IPCL: 92.0%; mid-level IPCL: 82.0%; junior IPCL: 73.3%
Li et al[39], 2021Image data set: 5367 imagesNM-NBIDetection of early ESCCFCNAUC: 0.9761; sensitivity: 91.0%; specificity: 96.7%; accuracy: 94.3%
Fukuda et al[41], 2020Image data set: 28333 imagesME-NBIDetection and characterization of early ESCCCNNDetection: Sensitivity: 91.0%; specificity: 51.0%; accuracy: 63.0%; characterization: Sensitivity: 86.0% specificity: 89.0%; accuracy: 88.0%
Liu et al[42], 2022Image data set: 13083; WLI images from 1239 patientsWLIDetection and delineation of ESCC marginsDCNNDetection: Accuracy: 85.7% (internal validation) and 84.5% (external validation); delineation: Accuracy: 93.4% (internal validation) and 95.7% (external validation)
Ikenoyama et al[44], 2021Image data set: 7301; images from 667 patientsLCEPredict multiple Lugol-voiding lesionsGoogLeNet deep neural networkSensitivity: 84.4%; specificity: 70.0%; accuracy: 76.4%
Yuan et al[47], 2023Image data set: 10047; images from 1112 patients; video data set: 140; videos from 1183 lesionsME-NBIDetection and delineation of ESCC marginsDCNNDetection: Accuracy: 92.4% (internal validation) and 89.9% (external validation); delineation: Accuracy: 88.9% (internal validation) and 87.0% (external validation)
Shimamoto et al[48], 2020Image data set: 23977; images from 909 patients; video data set: 102 videosNM-NBIAssessment of tumor infiltration depthCNNSensitivity: 50.0%; specificity: 99.0%; accuracy: 87.0%
Wang et al[49], 2023ME-BLI data set: 2887; images from 246 patients; ME-NBI data set: 493; images from 81 patientsME-BLI, ME-NBIIdentification of IPCLR-CNNRecall: 79.25%; precision: 75.54%; F1-score: 0.764; mean average precision: 74.95%
Zhang et al[53], 2023Image data set: 5119; images from 581 patients; video data set: 33 videosME-NBIInfiltration depth predictionAI-IDPSFor differentiating SM2-3; lesions: Image data set: Sensitivity: 85.7%; specificity: 86.3%; accuracy: 86.2%; video data set: Sensitivity: 87.5%; specificity: 84.0%; accuracy: 84.9%
Yuan et al[54], 2022Image data set: 7094; images from 685 patientsME-NBIClassification of IPCLs DCNNAccuracy (internal validation): 91.3%; accuracy (external validation): 89.8%