Copyright
©The Author(s) 2024.
World J Gastroenterol. Jul 7, 2024; 30(25): 3155-3165
Published online Jul 7, 2024. doi: 10.3748/wjg.v30.i25.3155
Published online Jul 7, 2024. doi: 10.3748/wjg.v30.i25.3155
Dataset | Score | Radiomics (All phase) | Combined (radiomics + clinical) |
Internal validation set | AUC | 0.96 (95%CI: 0.90-1.00) | 0.99 (95%CI: 0.96-1.00) |
Accuracy | 0.92 (95%CI: 0.78-0.98) | 0.94 (95%CI: 0.81-1.00) | |
Sensitivity | 0.93 (95%CI: 0.68-1.00) | 1.00 (95%CI: 0.78-1.00) | |
Specificity | 0.91 (95%CI: 0.70-1.00) | 0.91 (95%CI: 0.70-1.00) | |
External validation set | AUC | 0.98 (95%CI: 0.94-1.00) | 1.00 (95%CI: 0.99-1.00) |
Accuracy | 0.93 (95%CI: 0.82-0.98) | 1.00 (95%CI: 0.93-1.00) | |
Sensitivity | 0.96 (95%CI: 0.79-1.00) | 1.00 (95%CI: 0.86-1.00) | |
Specificity | 0.90 (95%CI: 0.73-0.98) | 1.00 (95%CI: 0.88-1.00) |
- Citation: Xiao MJ, Pan YT, Tan JH, Li HO, Wang HY. Computed tomography-based radiomics combined with machine learning allows differentiation between primary intestinal lymphoma and Crohn's disease. World J Gastroenterol 2024; 30(25): 3155-3165
- URL: https://www.wjgnet.com/1007-9327/full/v30/i25/3155.htm
- DOI: https://dx.doi.org/10.3748/wjg.v30.i25.3155