Copyright
©The Author(s) 2024.
World J Gastroenterol. Jan 14, 2024; 30(2): 170-183
Published online Jan 14, 2024. doi: 10.3748/wjg.v30.i2.170
Published online Jan 14, 2024. doi: 10.3748/wjg.v30.i2.170
Ref. | Year of publication | Application | Algorithm | Sensitivity, % | Specificity, % | Accuracy, % |
Aoki et al[29] | 2019 | Erosion/ulcer | CNN system based on SSD | 88.2 | 90.9 | 90.8 |
Ding et al[22] | 2019 | Ulcer | ResNet-152 | 99.7 | 99.9 | 99.8 |
Bleeding | 99.5 | 99.9 | 99.9 | |||
Vascular lesion | 98.9 | 99.9 | 99.2 | |||
Aoki et al[30] | 2020 | Protruding lesion | ResNet-50 | 100 | 99.9 | 99.9 |
Bleeding | 96.6 | 99.9 | 99.9 | |||
Current study | 2023 | Ulcer( P1U + P2U ) | Improved ResNet-50 + YOLO-V5 | 99.7 | 99.9 | 99.9 |
Vascular lesion | 97.4 | 99.9 | 99.9 | |||
Protruding lesion (P1P + P2P) | 98.1 | 99.9 | 99.9 | |||
Bleeding | 100 | 100 | 100 |
- Citation: Zhang RY, Qiang PP, Cai LJ, Li T, Qin Y, Zhang Y, Zhao YQ, Wang JP. Automatic detection of small bowel lesions with different bleeding risks based on deep learning models. World J Gastroenterol 2024; 30(2): 170-183
- URL: https://www.wjgnet.com/1007-9327/full/v30/i2/170.htm
- DOI: https://dx.doi.org/10.3748/wjg.v30.i2.170