Copyright
©The Author(s) 2023.
World J Gastroenterol. Nov 21, 2023; 29(43): 5804-5817
Published online Nov 21, 2023. doi: 10.3748/wjg.v29.i43.5804
Published online Nov 21, 2023. doi: 10.3748/wjg.v29.i43.5804
Model | AUC (95%CI) | Accuracy (95%CI) | Sensitivity (95%CI) | Specificity (95%CI) | F1 score (95%CI) |
XGBoost | 0.734 (0.601-0.867) | 0.683 (0.658-0.708) | 0.662 (0.596-0.729) | 0.782 (0.717-0.847) | 0.694 (0.636-0.752) |
GNB | 0.657 (0.512-0.802) | 0.618 (0.583-0.653) | 0.647 (0.443-0.851) | 0.662 (0.464-0.861) | 0.641 (0.535-0.748) |
MLP | 0.548 (0.396-0.699) | 0.514 (0.452-0.575) | 0.575 (0.398-0.752) | 0.627 (0.491-0.764) | 0.577 (0.471-0.682) |
SVM | 0.363 (0.217-0.509) | 0.446 (0.381-0.511) | 0.452 (0.035-0.870) | 0.617 (0.188-1.046) | NaN |
Logistic | 0.661 (0.517-0.806) | 0.632 (0.602-0.661) | 0.797 (0.709-0.886) | 0.525 (0.414-0.637) | 0.728 (0.706-0.751) |
AdaBoost | 0.649 (0.504-0.793) | 0.618 (0.569-0.667) | 0.591 (0.330-0.852) | 0.780 (0.610-0.950) | 0.617 (0.403-0.831) |
- Citation: Zhang YB, Yang G, Bu Y, Lei P, Zhang W, Zhang DY. Development of a machine learning-based model for predicting risk of early postoperative recurrence of hepatocellular carcinoma. World J Gastroenterol 2023; 29(43): 5804-5817
- URL: https://www.wjgnet.com/1007-9327/full/v29/i43/5804.htm
- DOI: https://dx.doi.org/10.3748/wjg.v29.i43.5804