Copyright
©The Author(s) 2023.
World J Gastroenterol. Nov 21, 2023; 29(43): 5804-5817
Published online Nov 21, 2023. doi: 10.3748/wjg.v29.i43.5804
Published online Nov 21, 2023. doi: 10.3748/wjg.v29.i43.5804
Model | AUC (95%CI) | Accuracy (95%CI) | Sensitivity (95%CI) | Specificity (95%CI) | F1 score (95%CI) |
XGBoost | 0.993 (0.984-1.000) | 0.974 (0.969-0.979) | 0.980 (0.971-0.988) | 0.976 (0.966-0.986) | 0.981 (0.977-0.985) |
GNB | 0.692 (0.624-0.761) | 0.671 (0.660-0.683) | 0.754 (0.689-0.820) | 0.566 (0.486-0.646) | 0.728 (0.705-0.750) |
MLP | 0.574 (0.501-0.648) | 0.563 (0.516-0.611) | 0.517 (0.274-0.761) | 0.637 (0.410-0.863) | 0.549 (0.411-0.686) |
SVM | 0.308 (0.240-0.376) | 0.453 (0.391-0.514) | 0.204 (-0.182-0.591) | 0.800 (0.413-1.187) | NaN |
Logistic | 0.702 (0.634-0.770) | 0.677 (0.657-0.696) | 0.747 (0.654-0.841) | 0.589 (0.499-0.679) | 0.727 (0.689-0.765) |
AdaBoost | 0.814 (0.761-0.868) | 0.725 (0.701-0.748) | 0.661 (0.585-0.737) | 0.825 (0.773-0.876) | 0.737 (0.700-0.773) |
- Citation: Zhang YB, Yang G, Bu Y, Lei P, Zhang W, Zhang DY. Development of a machine learning-based model for predicting risk of early postoperative recurrence of hepatocellular carcinoma. World J Gastroenterol 2023; 29(43): 5804-5817
- URL: https://www.wjgnet.com/1007-9327/full/v29/i43/5804.htm
- DOI: https://dx.doi.org/10.3748/wjg.v29.i43.5804