Copyright
©The Author(s) 2023.
World J Gastroenterol. Jun 28, 2023; 29(24): 3855-3870
Published online Jun 28, 2023. doi: 10.3748/wjg.v29.i24.3855
Published online Jun 28, 2023. doi: 10.3748/wjg.v29.i24.3855
Model | Precision | Sensitivity | Specificity | Accuracy | AUROC | F1 score |
XGBoost | 0.75 | 0.75 | 0.857 | 0.818 | 0.889 | 0.75 |
ET | 0.667 | 1 | 0.667 | 0.8 | 0.833 | 0.8 |
GBDT | 0.667 | 1 | 0.667 | 0.8 | 0.87 | 0.8 |
LR | 0.8 | 0.667 | 0.889 | 0.8 | 0.741 | 0.727 |
RF | 0.625 | 0.833 | 0.667 | 0.733 | 0.907 | 0.714 |
- Citation: Mao J, Chao K, Jiang FL, Ye XP, Yang T, Li P, Zhu X, Hu PJ, Zhou BJ, Huang M, Gao X, Wang XD. Comparison and development of machine learning for thalidomide-induced peripheral neuropathy prediction of refractory Crohn’s disease in Chinese population. World J Gastroenterol 2023; 29(24): 3855-3870
- URL: https://www.wjgnet.com/1007-9327/full/v29/i24/3855.htm
- DOI: https://dx.doi.org/10.3748/wjg.v29.i24.3855