Minireviews
Copyright ©The Author(s) 2023.
World J Gastroenterol. Mar 28, 2023; 29(12): 1811-1823
Published online Mar 28, 2023. doi: 10.3748/wjg.v29.i12.1811
Table 1 Studies exploring artificial intelligence algorithms for the diagnosis of early lesions and prediction of pancreatic cancer
Ref.
Purpose of the model
Type of study
Type of model
Input data
Type of validation
No. cases
Qureshi et al[19], 2022Identifying predictive features on prediagnostic CT scans for PDACRetrospectiveNB4000 radiomics from CTExternal72 (36 with PC)
Sekaran et al[22], 2020Predicting PCRetrospectiveCNN19000 images from CTInternal80 (NS)
Chen et al[36], 2018Identification and classification methods for PC on MRIRetrospectiveCNN863 images from MRIInternal40 (20 with PC)
Muhammad et al[18], 2019Prediction of PC riskRetrospectiveCNN18 features of epidemiologic and clinical dataExternal800144 (898 with PC)
Alves et al[8], 2022Detection and localization of small PDAC lesions on contrast-enhanced CTRetrospectiveDL242 images from CT-CEExternal242 (119 with PC)
Kuwahara et al[35], 2019Investigate the value of EUS in predicting malignancy in IPMNRetrospectiveCNN3970 radiomics from EUSInternal50 (23 malignant)
Hussein et al[3], 2019Identification of IPMNRetrospectiveCAD171 MRI imagesInternal171 (133 IMPN)
Chakraborty et al[15], 2018Identification of high-risk IPMNRetrospectiveSVM 103 CT imagesInternal103 (27 high-risk IMPN)
Liu et al[28], 2020Classifying images as cancerous or noncancerous PCRetrospectiveCNN21105 CT imagesInternal and external1242 (752 with PC)
Lee et al[44], 2022Prediction of risk for PCRetrospectiveDNN9 factorsInternal and external2952 (738 with PC)