Minireviews
Copyright ©The Author(s) 2022.
World J Gastroenterol. Dec 7, 2022; 28(45): 6363-6379
Published online Dec 7, 2022. doi: 10.3748/wjg.v28.i45.6363
Table 5 Summary of studies using deep-learning-based radiomics for colorectal cancer
Ref.
Imaging
Study design
Study aim
DL model
Dataset
Outcomes
Wu et al[67], 2020CTRetrospectivePredicting KRAS status in patients with CRCCNNPrimary cohort: 279 patients; validation cohort: 119 patientsC-index of 0.815 for the primary cohort and 0.832 for the validation cohort
Wei et al[68], 2021CTRetrospectivePredicting the response to chemotherapy in CRLMResNet10192 patientsAUC of DLR: 0.820; AUC of HCR: 0.598
Zhang et al[69], 2021MRIRetrospectivePredicting the MSI status of CRC MobileNetV2491 patientsAccuracy: 85.4%; AUC: 0.868
Fu et al[70], 2020MRIRetrospectivePredicting NCRT response in patients with LARCVGG1943 patientsAUC of DLR: 0.73; AUC of HCR: 0.64
Liu et al[71], 2021MRIRetrospectivePredicting the distant metastasis of LARC patients receiving NCRTResNet18235 patientsC-index of 0.747 and AUC of 0.894 in the validation cohort
Lu et al[72], 2021CTRetrospectivePrediction of early on-treatment response in mCRCCNN + RNN1028 patientsC-index: 0.649
Ding et al[73], 2020MRIRetrospectivePrediction of metastatic LN in CRCFaster RCNN545 patientsAUC for training: 0.862; AUC for validation: 0.920
Zhao et al[74], 2022CTRetrospectivePrediction of metastatic LN in CRCAutoencoder423 patientsAUC for training: 0.81; AUC for validation: 0.73; AUC for testing: 0.77
Li et al[75], 2020MRIRetrospectiveClassification of CRC LN Metastasis imagesAlexNet3364 samples (1646 positive; 1718 negative)Accuracy: 75.83%; AUC: 0.7941