Copyright
©The Author(s) 2022.
World J Gastroenterol. Oct 14, 2022; 28(38): 5530-5546
Published online Oct 14, 2022. doi: 10.3748/wjg.v28.i38.5530
Published online Oct 14, 2022. doi: 10.3748/wjg.v28.i38.5530
Ref. | Diseases: number of cases | Type of ultrasound | Algorithm of AI | Performance |
Byra et al[21] | Severely obese patients: 55 | B-mode | CNN | Sensitivity: 100% |
Specificity: 88% | ||||
Accuracy: 96% | ||||
AUC: 0.98 | ||||
Fatty liver disease: 38 | ||||
Biswas et al[22] | Normal patients: 27 | B-mode | Deep learning | Accuracy: 100% |
Fatty liver disease: 36 | AUC: 1.0 | |||
Han et al[24] | NAFLD: 140 | B-mode | CNN | Sensitivity: 97% |
Specificity: 94% | ||||
Accuracy: 96% | ||||
Control: 64 | ||||
AUC: 0.98 | ||||
Yeh et al[28] | Postsurgical human liver samples: 20 | B-mode | SVM | F2 accuracy: 91% |
F3 accuracy: 85% | ||||
F4 accuracy: 81% | ||||
F6 accuracy: 72% | ||||
Zhang et al[29] | Liver fibrosis or cirrhosis: 239 | Duplex | ANN | Sensitivity: 95% |
Specificity: 85% | ||||
Training group: 179 | ||||
Validation group: 60 | Accuracy: 88% | |||
Gao et al[30] | S0: 4 | B-mode | ANN | S0 accuracy: 100% |
S1: 16 | S1 accuracy: 90% | |||
S2 accuracy: 70% | ||||
S3 accuracy: 90% | ||||
S2: 8 | S4 accuracy: 100% | |||
S3: 5 | ||||
S4: 4 | ||||
Lee et al[31] | Patients: 3446 | B-mode | CNN | AUC: 0.86 |
Internal validation set: 263 | ||||
Internal test set: 266 | ||||
External test set: 572 | ||||
Gatos et al[34,35] | Chronic liver disease: 70 | Shear-wave elastography | SVM | Sensitivity: 94% |
Healthy: 56 | Specificity: 81% | |||
Accuracy: 87% | ||||
Wang et al[36] | Liver fibrosis: 398 | Shear-wave elastography | Deep learning radiomic | F4 AUC: 0.97 |
Training group: 266 | ||||
Validation group: 132 | F3 AUC: 0.98 | |||
F2 AUC: 0.85 | ||||
Xue et al[38] | Liver fibrosis: 401 | Elastography | CNN by TL radiomics | S2 AUC: 0.95 |
S3 AUC: 0.93 | ||||
Patient without fibrosis: 65 | ||||
S4 AUC: 0.93 |
- Citation: Liu JQ, Ren JY, Xu XL, Xiong LY, Peng YX, Pan XF, Dietrich CF, Cui XW. Ultrasound-based artificial intelligence in gastroenterology and hepatology. World J Gastroenterol 2022; 28(38): 5530-5546
- URL: https://www.wjgnet.com/1007-9327/full/v28/i38/5530.htm
- DOI: https://dx.doi.org/10.3748/wjg.v28.i38.5530