Minireviews
Copyright ©The Author(s) 2022.
World J Gastroenterol. Oct 14, 2022; 28(38): 5530-5546
Published online Oct 14, 2022. doi: 10.3748/wjg.v28.i38.5530
Table 1 Application of ultrasound-based artificial intelligence in diffuse liver diseases
Ref.
Diseases: number of cases
Type of ultrasound
Algorithm of AI
Performance
Byra et al[21]Severely obese patients: 55B-modeCNNSensitivity: 100%
Specificity: 88%
Accuracy: 96%
AUC: 0.98
Fatty liver disease: 38
Biswas et al[22]Normal patients: 27B-mode Deep learningAccuracy: 100%
Fatty liver disease: 36AUC: 1.0
Han et al[24]NAFLD: 140 B-mode CNNSensitivity: 97%
Specificity: 94%
Accuracy: 96%
Control: 64
AUC: 0.98
Yeh et al[28]Postsurgical human liver samples: 20B-mode SVMF2 accuracy: 91%
F3 accuracy: 85%
F4 accuracy: 81%
F6 accuracy: 72%
Zhang et al[29]Liver fibrosis or cirrhosis: 239Duplex ANNSensitivity: 95%
Specificity: 85%
Training group: 179
Validation group: 60Accuracy: 88%
Gao et al[30]S0: 4B-mode ANNS0 accuracy: 100%
S1: 16S1 accuracy: 90%
S2 accuracy: 70%
S3 accuracy: 90%
S2: 8S4 accuracy: 100%
S3: 5
S4: 4
Lee et al[31]Patients: 3446B-mode CNNAUC: 0.86
Internal validation set: 263
Internal test set: 266
External test set: 572
Gatos et al[34,35]Chronic liver disease: 70Shear-wave elastography SVMSensitivity: 94%
Healthy: 56Specificity: 81%
Accuracy: 87%
Wang et al[36]Liver fibrosis: 398Shear-wave elastography Deep learning radiomicF4 AUC: 0.97
Training group: 266
Validation group: 132F3 AUC: 0.98
F2 AUC: 0.85
Xue et al[38]Liver fibrosis: 401ElastographyCNN by TL radiomicsS2 AUC: 0.95
S3 AUC: 0.93
Patient without fibrosis: 65
S4 AUC: 0.93