Copyright
©The Author(s) 2021.
World J Gastroenterol. Nov 28, 2021; 27(44): 7687-7704
Published online Nov 28, 2021. doi: 10.3748/wjg.v27.i44.7687
Published online Nov 28, 2021. doi: 10.3748/wjg.v27.i44.7687
Accuracy | Sensitivity | Specificity | F1 score | |
TCGA Frozen Tissue Slides | ||||
CDH1 | 0.847 | 0.700 | 0.952 | 0.792 |
ERBB2 | 0.716 | 1.000 | 0.512 | 0.746 |
KRAS | 0.773 | 0.883 | 0.708 | 0.745 |
PIK3CA | 0.834 | 0.771 | 0.884 | 0.806 |
TP53 | 0.667 | 0.743 | 0.602 | 0.673 |
TCGA FFPE Tissue Slides | ||||
CDH1 | 0.820 | 0.608 | 1.000 | 0.756 |
ERBB2 | 0.574 | 1.000 | 0.285 | 0.655 |
KRAS | 0.894 | 0.727 | 1.000 | 0.842 |
PIK3CA | 0.803 | 0.629 | 0.923 | 0.723 |
TP53 | 0.673 | 0.678 | 0.668 | 0.659 |
- Citation: Jang HJ, Lee A, Kang J, Song IH, Lee SH. Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach. World J Gastroenterol 2021; 27(44): 7687-7704
- URL: https://www.wjgnet.com/1007-9327/full/v27/i44/7687.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i44.7687