Copyright
©The Author(s) 2021.
World J Gastroenterol. Oct 28, 2021; 27(40): 6825-6843
Published online Oct 28, 2021. doi: 10.3748/wjg.v27.i40.6825
Published online Oct 28, 2021. doi: 10.3748/wjg.v27.i40.6825
Ref. | Task | Method | MR image | DICE |
Mole et al[37], 2020 | Segment liver from T1 mapping technique to aid surgical planning | 3D U-Net | T1 map | 0.97 |
Winther et al[27], 2020 | Segment liver from Gd-EOB-DTPA-enhanced MRI for volume calculations | 3D U-Net | Gadoxetic acid-enhanced MRI | 0.96 ± 1.9 |
Liu et al[30], 2020 | Segment liver for automated liver iron quantification | 2D U-Net | T2* map | 0.86 ± 0.01 |
Wang et al[43], 2019 | Segment Liver across multiple imaging modalities and techniques | 2D U-Net | T1- and T2*- weighted | T1-w: 0.95 ± 0.03 |
T2-w: 0.92 ± 0.05 | ||||
Cunha et al[46], 2020 | Segment liver to classify if adequate contrast uptake has occurred in contrast enhanced scans | 2D U-Net | Pre- and post-contrast T1- weighted, and T2- weighted | Not reported |
Chen et al[31], 2020 | Segment multiple organs in abdominal scans, to aid radiotherapy planning | 2D Dense U-Net | T1-weighted | Liver: 0.96 ± 0.009 |
Bousabarah et al[36], 2020 | Segment and delineate HCCs | 2D U-Net | Gadoxetic acid-enhanced MRI | Liver: 0.91 ± 0.01 |
Tumour: 0.68 ± 0.03 | ||||
Ivashchenko et al[41], 2019 | Segment liver, vasculature and biliary tree | 4D k-mean clustering | Gadoxetic acid-enhanced MRI | Liver: 0.95 ± 0.01 |
Irving et al[44], 2017 | Segment liver with vessel exclusion to assist in liver assessment | 2D U-Net | T1 map | 0.95 |
Yang et al[45], 2019 | Segment liver across multiple domains via domain transfer | Cycle GAN and 2D U-Net | Gadoxetic acid-enhanced MRI | 0.891 ± 0.040 |
Christ et al[39], 2017 | Segment liver and tumours within, in CT and MRI | Two sequential 2D U-Nets | Diffusion-weighted | Liver: 0.87 |
Tumour: 0.697 | ||||
Fu et al[35], 2018 | Segment multiple organs in abdominal scans, to aid radiotherapy planning | Three Dense CNNs | T2/T1-weighted | Liver: 0.953 ± 0.007 |
Valindria et al[33], 2018 | Segment multiple organs in multi-modal (MR,CT) scans | ResNet Encoder Decoder | T2-weighted | Liver: 0.914 |
Masoumi et al[42], 2012 | Segment the liver | Watershed (non-AI) + ANN | Abdominal MRI | 0.94 (IoU not DICE) |
Jansen et al[40], 2019 | Segment liver and metastases | CNN | DCE-MR and diffusion-weighted | Liver: 0.95 |
- Citation: Hill CE, Biasiolli L, Robson MD, Grau V, Pavlides M. Emerging artificial intelligence applications in liver magnetic resonance imaging. World J Gastroenterol 2021; 27(40): 6825-6843
- URL: https://www.wjgnet.com/1007-9327/full/v27/i40/6825.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i40.6825